Skip to main content
Log in

Optimal Control for Switched Systems with Pre-defined Order and Switch-Dependent Dynamics

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The optimal control problem for switched systems, with a predefined order of switches, is considered. The differential equations may depend explicitly on previous switching instants, and the latter may be state dependent. The solution is based on the Calculus-of-Variations, which leads to a single two-point boundary-value problem. A new condition for the Hamiltonian jump at the switching instants is obtained. Simple numerical examples demonstrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Xu, X., Antsaklis, P.J.: Optimal control of switched systems via non-linear optimization based on direct differentiations of value function. Int. J. Control 75(16/17), 1406–1426 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Xu, X., Antsaklis, P.J.: Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Autom. Control 49(1), 2–15 (2009)

    Article  MathSciNet  Google Scholar 

  3. Xu, X., Antsaklis, P.J.: Optimal control of switched hybrid systems: a brief survey. Technical Report ISIS-2011-003, University of Notre Dame (2011)

  4. Benega, S.C., DeCarlo, R.A.: Optimal control of switching systems. Automatica 41(1), 11–27 (2005)

    MathSciNet  Google Scholar 

  5. Sigal, E.: Sub-optimal solution to a non-linear missile guidance problem. Ph.D. Dissertation, Technion (2012)

  6. Bryson, A.E., Ho, Y.-C.: Applied Optimal Control, pp. 104–106. Hemisphere, New-York (1975)

    Google Scholar 

  7. Ben-Asher, J.Z.: Optimal Control Theory with Aerospace Application, pp. 92–94. AIAA, Reston (2010)

    Book  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Mr. Aron W. Pila of Israel Military Industries’ Central Laboratory for his editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Z. Ben-Asher.

Additional information

Communicated by Josef Shinar.

Appendix: Proof of Theorem 2.1

Appendix: Proof of Theorem 2.1

A switched dynamic system is described in Eq. (1) below. The initial system equations g 1 are dependent on the state, control, and time. The second equations of the system g 2 are also dependent on the switching time. Note that, since this is a physical (causal) system, g 1 cannot depend on the future switching instance.

$$ \dot{x}(t) = \left \{\begin{array}{l@{\quad}l} g_{1} ( x ( t ),u (t ),t ), & t \in [t_{0},t_{s}], \\ g_{2} ( x ( t ),u ( t ),t,t_{s} ), & t \in\, ]t_{s},t_{f}]. \end{array} \right . $$
(31)

The state variable x(t), and the control variable u(t), are of dimensions n and m, respectively.

The switching may be constrained by the general interior constraint

$$ \psi ( x_{s},t_{s} ) = 0. $$
(32)

The control u is piecewise continuous (PWC), g 1 and g 2 are continuous and have all of the required partial derivatives; but we may have g 1(t s )≠g 2(t s ), i.e. no continuity of the state derivatives at the switching instance. The result is that \(\dot{x}\) is PWC, and x is piece wise smooth (PWS).

We want to minimize the general cost function

$$ J: = \varphi ( x_{f},t_{f} ) + \int_{t_{0}}^{t_{f}} L ( x,u,t )\,dt, $$
(33)

for specified initial conditions, but the switching time and the final time are free.

Let us adjoin the performance index with the system equations, using the Lagrange multipliers (costates) λ(t); and adjoin the interior constraint, using the constant Lagrange multiplier ν ([6]; see also the discussion in [7]).

$$\begin{aligned} \tilde{J} =& \varphi ( x_{f},t_{f} ) + \nu^{T} \psi ( x_{s},t_{s} ) + \int_{t_{0}}^{t_{s}} \bigl[ L ( x,u,t ) + \lambda^{T} ( g_{1} - \dot{x} ) \bigr] \,dt \\ &{}+ \int_{t_{s}}^{t_{f}} \bigl[ L ( x,u,t ) + \lambda^{T} ( g_{2} - \dot{x} ) \bigr]\,dt. \end{aligned}$$
(34)

The perturbed cost, taking into account the variations in the state; the control; the switching time; and the free final time, is

$$\begin{aligned} &\tilde{J} ( x + \delta x,u + \delta u,t_{s} + \delta t_{s},t_{f} + \delta t_{f} ) \\ &\quad= \tilde{J} + \delta \tilde{J} = \varphi ( x_{f},t_{f} ) + \frac{\partial \varphi}{\partial x}\,dx \bigg|_{t_{f}} + \frac{\partial \varphi}{\partial t}\delta t_{f} \bigg|_{t_{f}} \\ &\qquad{} + \nu^{T} \biggl( \psi ( x_{s},t_{s} ) + \frac{\partial \psi}{\partial x}\,dx \bigg|_{t_{s}} + \frac{\partial \psi}{\partial t}\delta t_{s} \bigg|_{t_{s}} \biggr) \\ &\qquad{} + \int_{t_{0}}^{t_{s} + \delta t_{s}} \biggl[ L + \frac{\partial L}{\partial x}\delta x + \frac{\partial L}{\partial u}\delta u \\ &\qquad{}+ \lambda^{T} \biggl( g_{1} + \frac{\partial g_{1}}{\partial x}\delta x + \frac{\partial g_{1}}{\partial u}\delta u \biggr) - \lambda^{T} ( \dot{x} + \delta \dot{x} ) \biggr]\,dt \\ &\qquad{} + \int_{t_{s} + \delta t_{s}}^{t_{f} + \delta t_{f}} \biggl[ L + \frac{\partial L}{\partial x}\delta x + \frac{\partial L}{\partial u}\delta u \\ &\qquad{}+ \lambda^{T} \biggl( g_{2} + \frac{\partial g_{2}}{\partial x}\delta x + \frac{\partial g_{2}}{\partial u}\delta u + \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s} \biggr) - \lambda^{T} ( \dot{x} + \delta \dot{x} ) \biggr]\,dt. \end{aligned}$$
(35)

Subtracting (34) from (35), results in the variation in the cost:

$$\begin{aligned} \delta \tilde{J} =& \frac{\partial \varphi}{ \partial x}\,dx \bigg|_{t_{f}} + \frac{\partial \varphi}{\partial t} \delta t_{f} \bigg|_{t_{f}} + \nu^{T} \frac{\partial \psi}{ \partial x}\,dx \bigg|_{t_{s}} + \nu^{T} \frac{\partial \psi}{ \partial t}\delta t_{s} \bigg|_{t_{s}} \\ &{} + \int_{t_{0}}^{t_{s}} \biggl[ \frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( \frac{\partial g_{1}}{\partial x}\delta x + \frac{\partial g_{1}}{\partial u}\delta u \biggr) - \lambda^{T}\delta \dot{x} \biggr]\,dt \\ &{} + \int_{t_{s}}^{t_{s} + \delta t_{s}} \biggl[ L + \frac{\partial L}{\partial x}\delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( g_{1} + \frac{\partial g_{1}}{\partial x}\delta x + \frac{\partial g_{1}}{\partial u}\delta u \biggr) \\ &{}- \lambda^{T} ( \dot{x} + \delta \dot{x} ) \biggr]\,dt \\ &{} + \int_{t_{s}}^{t_{f}} \biggl[ \frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( \frac{\partial g_{2}}{\partial x}\delta x + \frac{\partial g_{2}}{\partial u}\delta u + \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s} \biggr) - \lambda^{T}\delta \dot{x} \biggr]\,dt \\ &{} + \int_{t_{f}}^{t_{f} + \delta t_{f}} \biggl[ L + \frac{\partial L}{\partial x}\delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( g_{2} + \frac{\partial g_{2}}{\partial x}\delta x + \frac{\partial g_{2}}{\partial u}\delta u + \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s} \biggr) \\ &{}- \lambda^{T} ( \dot{x} + \delta \dot{x} ) \biggr]\,dt \\ &{} - \int_{t_{s}}^{t_{s} + \delta t_{s}} \biggl[ L + \frac{\partial L}{\partial x}\delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( g_{2} + \frac{\partial g_{2}}{\partial x}\delta x + \frac{\partial g_{2}}{\partial u}\delta u + \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s} \biggr) \\ &{} - \lambda^{T} ( \dot{x} + \delta \dot{x} ) \biggr]\,dt. \end{aligned}$$
(36)

Integration by parts of \(\int_{t_{1}}^{t_{2}} \lambda^{T}\delta \dot{x}\,dt = \lambda^{T}\delta x |_{t_{2}} - \lambda^{T}\delta x |_{t_{1}} - \int_{t_{1}}^{t_{2}} \dot{\lambda}^{T}\delta x\,dt\), results in

$$\begin{aligned} \delta \tilde{J} =& \frac{\partial \varphi}{ \partial x}\,dx \bigg|_{t_{f}} + \frac{\partial \varphi}{\partial t} \delta t_{f}\bigg |_{t_{f}} + \nu^{T} \frac{\partial \psi}{ \partial x}\,dx \bigg|_{t_{s}} + \nu^{T} \frac{\partial \psi}{ \partial t}\delta t_{s} \bigg|_{t_{s}} \\ &{} + \int_{t_{0}}^{t_{s}} \biggl[ \frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( \frac{\partial g_{1}}{\partial x}\delta x + \frac{\partial g_{1}}{\partial u}\delta u \biggr) + \dot{ \lambda}^{T}\delta x \biggr]\,dt \\ &{}- \lambda^{T}\delta x \big|_{t_{s}^{ -}} + \lambda^{T}\delta x \big|_{t_{0}} \\ &{} + \int_{t_{s}}^{t_{s} + \delta t_{s}} \biggl[ L + \frac{\partial L}{\partial x}\delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( g_{1} + \frac{\partial g_{1}}{\partial x}\delta x + \frac{\partial g_{1}}{\partial u}\delta u \biggr) \\ &{}- \lambda^{T} ( \dot{x} + \delta \dot{x} ) \biggr]\,dt \\ &{} + \int_{t_{s}}^{t_{f}} \biggl[ \frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( \frac{\partial g_{2}}{\partial x}\delta x + \frac{\partial g_{2}}{\partial u}\delta u + \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s} \biggr) + \dot{\lambda}^{T}\delta x \biggr]\,dt \\ &{}- \lambda^{T}\delta x \big|_{tf} + \lambda^{T}\delta x \big|_{t_{s}^{ +}} \\ &{} + \int_{t_{f}}^{t_{f} + \delta t_{f}} \biggl[ L + \frac{\partial L}{\partial x}\delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( g_{2} + \frac{\partial g_{2}}{\partial x}\delta x + \frac{\partial g_{2}}{\partial u}\delta u + \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s} \biggr) \\ &{}- \lambda^{T} ( \dot{x} + \delta \dot{x} ) \biggr]\,dt \\ &{} - \int_{t_{s}}^{t_{s} + \delta t_{s}} \biggl[ L + \frac{\partial L}{\partial x}\delta x + \frac{\partial L}{\partial u}\delta u + \lambda^{T} \biggl( g_{2} + \frac{\partial g_{2}}{\partial x}\delta x + \frac{\partial g_{2}}{\partial u}\delta u + \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s} \biggr) \\ &{}- \lambda^{T} ( \dot{x} + \delta \dot{x} ) \biggr]\,dt. \end{aligned}$$
(37)

In the first order variation, the approximation \(\int_{t}^{t + \delta t} f\,dt \approx f\delta t\) is used. Using this approximation, and neglecting higher order terms such as δxδt; \(\delta \dot{x} \cdot \delta t\); and δuδt, leads to

$$\begin{aligned} \delta \tilde{J} =& \frac{\partial \varphi}{ \partial x}\,dx \bigg|_{t_{f}} + \frac{\partial \varphi}{\partial t} \delta t_{f} \bigg|_{t_{f}} + \nu^{T} \frac{\partial \psi}{ \partial x}\,dx \bigg|_{t_{s}} + \nu^{T} \frac{\partial \psi}{ \partial t}\delta t_{s} \bigg|_{t_{s}} \\ &{} + \int_{t_{0}}^{t_{s}} \biggl[ \biggl( \frac{\partial L}{\partial x} + \lambda^{T}\frac{\partial g_{1}}{\partial x} + \dot{ \lambda}^{T} \biggr)\delta x + \biggl( \frac{\partial L}{\partial u} + \lambda^{T}\frac{\partial g_{1}}{\partial u} \biggr)\delta u \biggr]\,dt - \lambda^{T}\delta x \big|_{t_{s}^{ -}} \\ &{} + \lambda^{T}\delta x \big|_{t_{0}} + \bigl( L + \lambda^{T}g_{1} - \lambda^{T} \dot{x} \bigr) \big|_{t_{s}}\delta t_{s} \\ &{} + \int_{t_{s}}^{t_{f}} \biggl[ \biggl( \frac{\partial L}{\partial x} + \lambda^{T}\frac{\partial g_{2}}{\partial x} + \dot{ \lambda}^{T} \biggr)\delta x + \biggl( \frac{\partial L}{\partial u} + \lambda^{T}\frac{\partial g_{2}}{\partial u} \biggr)\delta u + \lambda^{T} \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s} \biggr]\,dt \\ &{} - \lambda^{T}\delta x \big|_{tf} + \lambda^{T}\delta x \big|_{t_{s}^{ +}} \\ &{} + \bigl( L + \lambda^{T}g_{2} - \lambda^{T} \dot{x} \bigr) \big|_{t_{f}}\delta t_{f} - \bigl( L + \lambda^{T}g_{2} - \lambda^{T}\dot{x} \bigr) \big|_{t_{s}}\delta t_{s}. \end{aligned}$$
(38)

The Hamiltonian is defined as

$$ H ( x,u,t,\lambda ): = \left \{\begin{array}{l@{\quad}l} L + \lambda^{T}g_{1}, & t \in [t_{0},t_{s}], \\ L + \lambda^{T}g_{2}, & t \in\, ]t_{s},t_{f}]. \end{array} \right . $$
(39)

For simplicity, the costates are chosen in a manner that causes the coefficients of δx to vanish

$$ \dot{\lambda}^{T} = - \frac{\partial H}{\partial x} = \left \{ \begin{array}{l@{\quad}l} - \frac{\partial L}{\partial x} - \lambda^{T}\frac{\partial g_{1}}{\partial x}, & t \in [t_{0},t_{s}], \\ - \frac{\partial L}{\partial x} - \lambda^{T}\frac{\partial g_{2}}{\partial x}, & t \in\, ]t_{s},t_{f}]. \end{array} \right . $$
(40)

Using (39) and (40), the cost variation becomes

$$\begin{aligned} \delta \tilde{J} =& \frac{\partial \varphi}{ \partial x}\,dx \bigg|_{t_{f}} + \frac{\partial \varphi}{\partial t} \delta t_{f}\bigg |_{t_{f}} + \nu^{T} \frac{\partial \psi}{ \partial x}\,dx \bigg|_{t_{s}} + \nu^{T} \frac{\partial \psi}{ \partial t}\delta t_{s} \bigg|_{t_{s}} \\ &{} + \int_{t_{0}}^{t_{s}} \frac{\partial H}{\partial u}\delta u \,dt - \lambda^{T}\delta x\big |_{t_{s}^{ -}} + \lambda^{T} \delta x \big|_{t_{0}} + H |_{t_{s}^{ -}} \delta t_{s} - \lambda^{T}\dot{x} \big|_{t_{s}}\delta t_{s} \\ &{} + \int_{t_{s}}^{t_{f}} \frac{\partial H}{\partial u}\delta u\,dt + \int_{t_{s}}^{t_{f}} \lambda^{T} \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s}\,dt - \lambda^{T}\delta x \big|_{tf} + \lambda^{T}\delta x \big|_{t_{s}^{ +}} \\ &{} + H |_{t_{f}}\delta t_{f} - \lambda^{T} \dot{x}\big|_{t_{f}}\delta t_{f} - H |_{t_{s}^{ +}} \delta t_{s} + \lambda^{T}\dot{x} \big|_{t_{s}}\delta t_{s}. \end{aligned}$$
(41)

Note that δx is the variation in x for a fixed time, whereas dx is the total variation including the time variation. For the terminal time, we have \(dx_{f} = \delta x_{f} + \dot{x} ( t_{f} )\delta t_{f}\); and for the switching time, we have \(dx_{s} = \delta x_{s} + \dot{x} ( t_{s} )\delta t_{s}\). Substituting these relations into the cost variation results in

$$\begin{aligned} \delta \tilde{J} =& \frac{\partial \varphi}{ \partial x}\,dx \bigg|_{t_{f}} + \frac{\partial \varphi}{\partial t} \delta t_{f} \bigg|_{t_{f}} + \nu^{T} \frac{\partial \psi}{ \partial x}\,dx \bigg|_{t_{s}} + \nu^{T} \frac{\partial \psi}{ \partial t}\delta t_{s} \bigg|_{t_{s}} \\ &{} + \int_{t_{0}}^{t_{s}} \frac{\partial H}{\partial u}\delta u \,dt - \lambda^{T} ( dx - \dot{x}\delta t_{s} ) \big|_{t_{s}^{ -}} + \lambda^{T}\delta x \big|_{t_{0}} + H |_{t_{s}^{ -}} \delta t_{s} - \lambda^{T}\dot{x} \big|_{t_{s}}\delta t_{s} \\ &{} + \int_{t_{s}}^{t_{f}} \frac{\partial H}{\partial u}\delta u \,dt + \int_{t_{s}}^{t_{f}} \lambda^{T} \frac{\partial g_{2}}{\partial t_{s}}\delta t_{s}\,dt - \lambda^{T} ( dx - \dot{x}\delta t_{f} ) \big|_{tf} + \lambda^{T} ( dx - \dot{x}\delta t_{s} ) \big|_{t_{s}^{ +}} \\ &{}+ H |_{t_{f}}\delta t_{f} - \lambda^{T}\dot{x} \big|_{t_{f}}\delta t_{f} - H |_{t_{s}^{ +}} \delta t_{s} + \lambda^{T}\dot{x} \big|_{t_{s}}\delta t_{s}. \end{aligned}$$
(42)

Collecting terms, we have

$$\begin{aligned} \delta \tilde{J} =& \biggl( \frac{\partial \varphi}{ \partial x} - \lambda^{T} \biggr)\,dx \bigg|_{t_{f}} + \biggl( H + \frac{\partial \varphi}{\partial t} \biggr)\delta t_{f} \bigg|_{t_{f}} + \int_{t_{0}}^{t_{s}} \frac{\partial H}{\partial u}\delta u\,dt \\ &{}+ \int_{t_{s}}^{t_{f}} \frac{\partial H}{\partial u}\delta u\,dt + \lambda^{T}\delta x \big|_{t_{0}} + \biggl( \nu^{T}\frac{\partial \psi}{ \partial x_{s}} - \lambda^{T} \big|_{t_{s}^{ -}} + \lambda^{T} \big|_{t_{s}^{ +}} \biggr)\,dx_{s} \\ &{}+ \biggl( \nu^{T}\frac{\partial \psi}{\partial t_{s}} + H |_{t_{s}^{ -}} - H |_{t_{s}^{ +}} + \int_{t_{s}}^{t_{f}} \lambda^{T}\frac{\partial g_{2}}{\partial t_{s}}\,dt \biggr)\delta t_{s}. \end{aligned}$$
(43)

For an extremum, the cost should be non-improving, i.e. δJ≥0 for each of the variations. This leads to the following conditions.

  1. (a)

    For unconstrained continuous control, the optimality condition is

    $$ \frac{\partial H}{\partial u} = 0. $$
    (44)
  2. (b)

    The known transversality conditions, used for boundary values on the costates, are

    $$ \biggl( \frac{\partial \varphi}{\partial x} - \lambda^{T} \biggr)\,dx\bigg |_{t_{f}} = 0;\qquad \biggl( H + \frac{\partial \varphi}{ \partial t} \biggr)\delta t_{f} \bigg|_{t_{f}} = 0;\qquad \lambda^{T}\delta x \big|_{t_{0}} = 0. $$
    (45)
  3. (c)

    A new transversality condition, at the switching instance, takes the form of

    $$ \biggl( \nu^{T}\frac{\partial \psi}{\partial x_{s}} - \lambda^{T} \big|_{t_{s}^{ -}} + \lambda^{T} \big|_{t_{s}^{ +}} \biggr)\,dx_{s} = 0. $$
    (46)
  4. (d)

    A new condition for optimality of the switching instance (the parameter control) turns out to be

    $$ \biggl( \nu^{T}\frac{\partial \psi}{\partial t_{s}} + H |_{t_{s}^{ -}} - H |_{t_{s}^{ +}} + \int_{t_{s}}^{t_{f}} \lambda^{T}\frac{\partial g_{2}}{\partial t_{s}}\,dt \biggr)\delta t_{s} = 0. $$
    (47)

Note: The term \(\int_{t_{s}}^{t_{f}} \lambda^{T}\frac{\partial g_{2}}{\partial t_{s}}\,dt\), in Eq. (47), is the additional term added due to the dependence of the system equation on the switching time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigal, E., Ben-Asher, J.Z. Optimal Control for Switched Systems with Pre-defined Order and Switch-Dependent Dynamics. J Optim Theory Appl 161, 582–591 (2014). https://doi.org/10.1007/s10957-013-0411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0411-8

Keywords

Navigation