Skip to main content
Log in

Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In a Hilbert space setting we introduce dynamical systems, which are linked to Newton and Levenberg–Marquardt methods. They are intended to solve, by splitting methods, inclusions governed by structured monotone operators M=A+B, where A is a general maximal monotone operator, and B is monotone and locally Lipschitz continuous. Based on the Minty representation of A as a Lipschitz manifold, we show that these dynamics can be formulated as differential systems, which are relevant to the Cauchy–Lipschitz theorem, and involve separately B and the resolvents of A. In the convex subdifferential case, by using Lyapunov asymptotic analysis, we prove a descent minimizing property and weak convergence to equilibria of the trajectories. Time discretization of these dynamics gives algorithms combining Newton’s method and forward-backward methods for solving structured monotone inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17, 1113–1163 (2010)

    MATH  MathSciNet  Google Scholar 

  2. Attouch, H., Svaiter, B.F.: A continuous dynamical Newton-like approach to solving monotone inclusions. SIAM J. Control Optim. 49, 574–598 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Attouch, H., Redont, P., Svaiter, B.F.: Global convergence of a closed-loop regularized Newton method for solving monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 157(3), 624–650 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beck, A., Teboulle, M.: Gradient-based algorithms with applications in signal recovery problems. In: Palomar, D., Eldar, Y. (eds.) Convex Optimization in Signal Processing and Communications, pp. 33–88. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  5. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)

    Chapter  Google Scholar 

  6. Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland/Elsevier, New York (1973)

    MATH  Google Scholar 

  7. Bauschke, H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory. CMS Books in Mathematics. Springer, Berlin (2011)

    MATH  Google Scholar 

  8. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators. Springer, New York (1990)

    Book  Google Scholar 

  9. Minty, G.J.: Monotone (nonlinear) operators in Hilbert spaces. Duke Math. J. 29, 341–346 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rockafellar, R.T.: Maximal monotone relations and the second derivatives of nonsmooth functions. Ann. Inst. Henri Poincaré 2, 167–184 (1985)

    MATH  MathSciNet  Google Scholar 

  11. Haraux, A.: Systèmes Dynamiques Dissipatifs et Applications. RMA, vol. 17. Masson, Paris (1991)

    MATH  Google Scholar 

  12. Sontag, E.D.: Mathematical Control Theory, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  13. Brézis, H.: Analyse Fonctionnelle. Masson, Paris (1983)

    MATH  Google Scholar 

  14. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert spaces. J. Funct. Anal. 18, 15–26 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bonnans, F.: Optimisation Continue, Mathématiques appliquées pour le Master/SMAI. Dunod, Paris (2006)

    Google Scholar 

  17. Antipin, A.S.: Minimization of convex functions on convex sets by means of differential equations. Differ. Equ. 30, 1365–1375 (1994)

    MATH  MathSciNet  Google Scholar 

  18. Bolte, J.: Continuous gradient projection method in Hilbert spaces. J. Optim. Theory Appl. 119, 235–259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Attouch, H., Briceno, L., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)

    Article  MATH  Google Scholar 

  20. Zhu, D.L., Marcotte, P.: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. J. Optim. 6, 714–726 (1996)

    MATH  MathSciNet  Google Scholar 

  21. Attouch, H., Maingé, P.-E., Redont, P.: A second-order differential system with Hessian-driven damping; application to non-elastic shock laws. Differ. Equ. Appl. 4, 27–65 (2012)

    MathSciNet  Google Scholar 

  22. Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics. J. Math. Pures Appl. 81, 747–779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

H. Attouch is partially supported by ANR-08-BLAN-0294-03; Benar F. Svaiter is partially supported by CNPq grants 302962/2011-5, 474944/2010-7, 480101/2008-6, 303583/2008-8, FAPERJ grants E-26/102.940/2011, E-26/102.821/2008, and by PRONEX-Optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Attouch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, B., Attouch, H. & Svaiter, B.F. Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces. J Optim Theory Appl 161, 331–360 (2014). https://doi.org/10.1007/s10957-013-0414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0414-5

Keywords

Navigation