Abstract
Recently, the study of symmetric cone complementarity problems has been a hot topic in the literature. Many numerical methods have been proposed for solving such a class of problems. Among them, the problems concerned are generally monotonic. In this paper, we consider symmetric cone linear complementarity problems with a class of non-monotonic transformations. A smoothing Newton algorithm is extended to solve this class of non-monotonic symmetric cone linear complementarity problems; and the algorithm is proved to be well-defined. In particular, we show that the algorithm is globally and locally quadratically convergent under mild assumptions. The preliminary numerical results are also reported.
Similar content being viewed by others
References
Chen, X., Qi, H.-D., Tseng, P.: Analysis of nonsmooth symmetric-matrix functions with applications to semidefinite complementarity problems. SIAM J. Optim. 13, 960–985 (2003)
Gowda, M.S., Sznajder, R.: Schur complements, Schur determinantal and Haynsworth inertia formulas in Euclidean Jordan algebras. Linear Algebra Appl. 432, 1553–1559 (2010)
Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)
Han, D.: On the coerciveness of some merit functions for complementarity problems over symmetric cones. J. Math. Anal. Appl. 336, 727–737 (2007)
Kong, L.C., Tunel, L., Xiu, N.H.: Vector-valued implicit Lagrangian for symmetric cone complementarity problems. Asia-Pac. J. Oper. Res. 26, 199–233 (2009)
Kum, S.H., Lim, Y.D.: Penalized complementarity functions on symmetric cones. J. Glob. Optim. 46, 1573–2916 (2010)
Lim, Y.: Applications of geometric means on symmetric cones. Math. Ann. 319, 457–468 (2001)
Lin, Y., Yoshise, A.: A homogeneous model for mixed complementarity problems over symmetric cones. Vietnam J. Math. 35, 541–562 (2007)
Liu, Y.J., Zhang, L.W., Wang, Y.H.: Some properties of a class of merit functions for symmetric cone complementarity problems. Asia-Pac. J. Oper. Res. 23, 473–495 (2006)
Lu, N., Huang, Z.H., Han, J.: Properties of a class of nonlinear transformations over Euclidean Jordan algebras with applications to complementarity problems. Numer. Funct. Anal. Optim. 30, 799–821 (2009)
Sun, D., Sun, J.: Löwner’s operator and spectral functions in Euclidean Jordan algebras. Math. Oper. Res. 33, 421–445 (2008)
Tao, J., Gowda, M.S.: Some P-properties for nonlinear transformulation on Euclidean Jordan algebras. Math. Oper. Res. 30, 985–1004 (2005)
Faybusovich, L.: Euclidean Jordan algebras and interior-point algorithms. Positivity 1, 331–357 (1997)
Faybusovich, L.: Linear systems in Jordan algebras and primal-dual interior-point algorithms. J. Comput. Appl. Math. 86, 149–175 (1997)
Schimieta, S.H., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones. Math. Oper. Res. 26, 543–564 (2001)
Schimieta, S.H., Alizadeh, F.: Extension of primal-dual interior-point algorithms to symmetric cones. Math. Program. 96, 409–438 (2003)
Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J. Optim. 17, 1129–1153 (2006)
Huang, Z.H., Hu, S.L., Han, J.: Global convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search. Sci. China Ser. A 52, 833–848 (2009)
Huang, Z.H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl. 45, 557–579 (2010)
Kong, L.C., Sun, J., Xiu, N.H.: A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J. Optim. 19, 1028–1047 (2008)
Liu, X.H., Gu, W.Z.: Smoothing Newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity problems over symmetric cones. J. Ind. Manag. Optim. 6, 363–380 (2010)
Liu, X.H., Huang, Z.H.: A smoothing Newton algorithm based on a one-parametric class of smoothing functions for linear programming over symmetric cones. Math. Methods Oper. Res. 70, 385–404 (2009)
Liu, Y.J., Zhang, L.W., Wang, Y.H.: Analysis of smoothing method for symmetric conic linear programming. J. Appl. Math. Comput. 22, 133–148 (2006)
Pan, S.H., Chen, J.S.: A one-parametric class of merit functions for the symmetric cone complementarity problem. J. Math. Anal. Appl. 355, 195–215 (2009)
Chua, C.B., Yi, P.: A continuation method for nonlinear complementarity problems over symmetric cone. SIAM J. Optim. 20, 2560–2583 (2010)
Chua, C.B., Lin, H.L., Yi, P.: Uniform nonsingularity and complementarity problems over symmetric cones. Research Report, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore (2009)
Luo, Z.Y., Xiu, N.H.: Path-following interior point algorithms for the Cartesian P ∗(κ)-LCP over symmetric cones. Sci. China Ser. A 52, 1769–1784 (2009)
Chen, X., Qi, H.-D.: Cartesian P-property and its applications to the semidefinite linear complementarity problem. Math. Program., Ser. A 106, 177–201 (2006)
Pan, S.H., Chen, J.S.: A regularization method for the second-order cone complementarity problem with the Cartesian P 0-property. Nonlinear Anal. 70, 1475–1491 (2009)
Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs. Oxford University Press, New York (1994)
Pan, S.H., Chen, J.S., Huang, Z.H.: A survey on coerciveness conditions of merit functions over symmetric cones. Manuscript (2011)
Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems. Math. Program. 87, 1–35 (2000)
Gowda, M.S., Tawhi, M.A.: Existence and limiting behavior of trajectories associated with P 0-equations. Comput. Optim. Appl. 12, 229–251 (1991)
Acknowledgements
This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11171252 and 11301409).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Liqun Qi.
Rights and permissions
About this article
Cite this article
Lu, N., Huang, ZH. A Smoothing Newton Algorithm for a Class of Non-monotonic Symmetric Cone Linear Complementarity Problems. J Optim Theory Appl 161, 446–464 (2014). https://doi.org/10.1007/s10957-013-0436-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-013-0436-z