Abstract
We introduce separation margin maximization, a characteristic of the Support Vector Machine technique, into the approach to binary classification based on polyhedral separability and we adopt a semisupervised classification framework.
In particular, our model aims at separating two finite and disjoint sets of points by means of a polyhedral surface in the semisupervised case, that is, by exploiting information coming from both labeled and unlabeled samples. Our formulation requires the minimization of a nonconvex nondifferentiable error function. Numerical results are presented on several data sets drawn from the literature.

Similar content being viewed by others
References
Megiddo, N.: On the complexity of polyhedral separability. Discrete Comput. Geom. 3, 325–337 (1988)
Astorino, A., Gaudioso, M.: Polyhedral separability through successive LP. J. Optim. Theory Appl. 112(2), 265–293 (2002)
Bagirov, A.M., Ugon, J., Webb, D., Ozturk, G., Kasimbeyli, R.: A novel piecewise linear classifier based on polyhedral conic and max-min separabilities. TOP 21(1), 3–24 (2013)
Gasimov, R.N., Ozturk, G.: Separation via polyhedral conic functions. Optim. Methods Softw. 21(4), 527–540 (2006)
Orsenigo, C., Vercellis, C.: Accurately learning from few examples with a polyhedral classifier. Comput. Optim. Appl. 38(2), 235–247 (2007)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)
Schölkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods. Support Vector Learning. MIT Press, Cambridge (1999)
Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Vapnik, V.: The Nature of the Statistical Learning Theory. Springer, New York (1995)
Joachims, T.: Transductive inference for text classification using support vector machines. In: International Conference on Machine Learning, pp. 200–209 (1999)
Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of the International Conference on Machine Learning, pp. 290–297 (2003)
Astorino, A., Fuduli, A., Gorgone, E.: Non-smoothness in classification problems. Optim. Methods Softw. 23(5), 675–688 (2008)
Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006)
Bennett, K.P., Demiriz, A.: Semi-supervised support vector machines. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems, vol. 12, pp. 368–374. MIT Press, Cambridge (1998)
Fung, G., Mangasarian, O.L.: Semi-supervised support vector machines for unlabeled data classification. Optim. Methods Softw. 15, 29–44 (2001)
Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pp. 57–64 (2005)
Astorino, A., Fuduli, A.: Nonsmooth optimization techniques for semisupervised classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2135–2142 (2007)
Chapelle, O., Sindhwani, V., Keerthi, S.S.: Branch and bound for semi-supervised support vector machines. In: Advances in Neural Information Processing Systems, pp. 217–224 (2007)
Bie, T., Cristianini, N.: Semi-supervised learning using semi-definite programming. In: Chapelle, O., Schölkopf, B., Zien, A. (eds.) Semi-Supervised Learning. MIT, Cambridge (2006)
Astorino, A., Gorgone, E., Gaudioso, M., Pallaschke, D.: Data preprocessing in semi-supervised SVM classification. Optimization 60(1–2), 143–151 (2011)
Chapelle, O., Sindhwani, V., Keerthi, S.S.: Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 9, 203–233 (2008)
Bagirov, A.M., Ugon, J., Webb, D., Karasözen, B.: Classification through incremental max-min separability. Pattern Anal. Appl. 14(2), 165–174 (2011)
Bagirov, A.M.: Max-min separability. Optim. Methods Softw. 20(2–3), 271–290 (2005)
Astorino, A., Fuduli, A., Gaudioso, M.: DC models for spherical separation. J. Glob. Optim. 48(4), 657–669 (2010)
Astorino, A., Fuduli, A., Gaudioso, M.: Margin maximization in spherical separation. Comput. Optim. Appl. 53(2), 301–322 (2012)
Astorino, A., Gaudioso, M.: Ellipsoidal separation for classification problems. Optim. Methods Softw. 20(2–3), 261–270 (2005)
Astorino, A., Gaudioso, M., Seeger, A.: Conic separation of finite sets. I. The homogeneous case. J. Convex Anal. 21(1) (2014)
Le Thi, H.A., Le, H.M., Pham Dinh, T., Van Huynh, N.: Binary classification via spherical separator by DC programming and DCA. J. Glob. Optim. 56(4), 1393–1407 (2013)
Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Mach. Learn. 46(1–3), 131–159 (2002)
Collobert, R., Sinz, F., Weston, J., Bottou, L.: Large scale transductive SVMs. J. Mach. Learn. Res. 7, 1687–1712 (2006)
Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14(3), 743–756 (2004)
Bergeron, C., Moore, G., Zaretzki, J., Breneman, C., Bennett, K.: Fast bundle algorithm for multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1068–1079 (2012)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, Vols. I–II. Springer, Berlin (1993)
Murphy, P.M., Aha, D.W.: UCI repository of machine learning databases. In (1992). www.ics.uci.edu/~mlearn/MLRepository.html
Odewahn, S., Stockwell, E., Pennington, R., Humphreys, R., Zumach, W.: Automated star/galaxy discrimination with neural networks. Astron. J. 103(1), 318–331 (1992)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at www.csie.ntu.edu.tw/~cjlin/libsvm
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Astorino, A., Fuduli, A. Support Vector Machine Polyhedral Separability in Semisupervised Learning. J Optim Theory Appl 164, 1039–1050 (2015). https://doi.org/10.1007/s10957-013-0458-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-013-0458-6