Skip to main content
Log in

Regularizations for Stochastic Linear Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper applies the Moreau–Yosida regularization to a convex expected residual minimization (ERM) formulation for a class of stochastic linear variational inequalities. To have the convexity of the corresponding sample average approximation (SAA) problem, we adopt the Tikhonov regularization. We show that any cluster point of minimizers of the Tikhonov regularization for the SAA problem is a minimizer of the ERM formulation with probability one as the sample size goes to infinity and the Tikhonov regularization parameter goes to zero. Moreover, we prove that the minimizer is the least \(l_2\)-norm solution of the ERM formulation. We also prove the semismoothness of the gradient of the Moreau–Yosida and Tikhonov regularizations for the SAA problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  2. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  3. Agdeppa, R.P., Yamashita, N., Fukushima, M.: Convex expected residual models for stochastic affine variational inequality problems and its application to the traffic equilibrium problem. Pac. J. Optim. 6, 3–19 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022–1038 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X., Wets, R.J.-B., Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing/sampling average approximations. SIAM J. Optim. 22, 649–673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X., Zhang, C., Fukushima, M.: Robust solution of monotone stochastic linear complementarity problems. Math. Program. 117, 51–80 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jiang, H., Xu, H.: Stochastic approximation approaches to the stochstic variational inequality problem. IEEE. Trans. Autom. Control 53, 1462–1475 (2008)

    Article  MathSciNet  Google Scholar 

  8. Li, Z., Lam, W.H.K., Sumalee, A.: Modeling impact of transit operator fleet size under various market regimes with uncertainty in network. Trans. Res. Rec. 2063, 18–27 (2008)

    Article  Google Scholar 

  9. Lin, G., Fukushima, M.: Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: a survey. Pac. J. Optim. 6, 455–482 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Ruszczynski, A., Shapiro, A.: Stochastic Programming. Handbooks in Operations Research and Management Science. Elsevier, London (2003)

    Google Scholar 

  11. Yin, Y.F., Madanat, S.M., Lu, X.Y.: Robust inprovement schemes for road networks under demand uncertainty. Eur. J. Oper. Res. 198, 470–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, C., Chen, X., Sumalee, A.: Robust wardrop’s user equilibrium assignment under stochastic demand and supply: expected residual minimization approach. Trans. Res. B 45, 534–552 (2011)

    Article  Google Scholar 

  13. Luo, M.J., Lin, G.H.: Expected residual minimization method for stochastic variational inequality problems. J. Optim. Theory Appl. 140, 103–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. G\(\ddot{u}\)rkan, G., \(\ddot{O}\)zge, A.Y., Robinson, S.M.: Sample path solution of stochastic variational inequalities with applications to option pricing. In: Charnes, J.M., Morrice, D.M., Brunner, D.T., Swai, J.J. (eds.) Proceedings of the 1996 Winter Simulation Conference, pp. 337–344 (1996)

  15. Gürkan, G., Özge, A.Y., Robinson, S.M.: Sample path solution of stochastic variational inequalities. Math. Program. 84, 313–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, F.Y., Yan, H., Yao, L.: A newsvendor pricing game. IEEE Trans. Syst. Man Cybern. 34, 450–456 (2004)

    Article  Google Scholar 

  17. Zhou, J., Lam, W.H.K., Heydecker, B.G.: The generalized nash equilibrium model for oligopolistic transit market with elastic demand. Transp. Res. B 39, 519–544 (2005)

    Article  Google Scholar 

  18. Marcotte, P.: Adavantages and drawbacks of variational inequalities formulations. In: Giannessi, F., Maugeri, A. (eds.) Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York (1995)

    Google Scholar 

  19. Peng, J.: Equivalentce of variational inequality problems to unconstrained optimization. Math. Program. 78, 347–355 (1997)

    MATH  Google Scholar 

  20. Fukushima, M.: Merit functions for variational inequality and complementarity problems. In: Pillo, G.D., Giannessi, F. (eds.) Nonlinear Optimization and Applications. Plenum Press, New York (1996)

    Google Scholar 

  21. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  22. Mangasarian, O.L., Shiau, T.-H.: Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM J. Control Optim. 25, 583–595 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rockafellar, R.T., Uayasev, S.: Optimization of conditional value-at-risk. Journal of Risk 2, 21–41 (2000)

    Google Scholar 

  24. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Heidelberg (1993)

    Google Scholar 

  25. Korf, L.A., Wets, R.J.-B.: Random lsc functions: an ergodic theorem. Math. Oper. Res. 26, 421–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Xu, H., Ye, J.: Penalized smaple average approximation methods for stochastic mathematical programs with complementarity constraints. Math. Oper. Res. 36, 670–694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, X., Fukushima, M.: Proximal quasi-newton methods for nondifferentiable convex optimization. Math. Program. 85, 313–334 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mifflin, R., Qi, L., Sun, D.: Properties of the morear-yosida regularization of a piecewise \(c^2\) convex funcion. Math. Program. 84, 269–281 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Meng, F., Goh, G.Z.M., Souza, R.D.: Lagrangian-dual functions and moreau-yosida regularization. SIAM J. Optim. 19, 39–61 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author’s work was supported in part by the NSF foundation (11001011) of China and China Postdoctoral Science Foundation (2013M541065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfang Zhang.

Additional information

Communicated by Masao Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Chen, X. Regularizations for Stochastic Linear Variational Inequalities. J Optim Theory Appl 163, 460–481 (2014). https://doi.org/10.1007/s10957-013-0514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0514-2

Keywords

Mathematics Subject Classification

Navigation