Skip to main content
Log in

Minimum Type Functions, Plus-Cogauges, and Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, the concept of plus-cogauge is introduced. It is shown that this class of functions can be considered as an extension of the class of so-called min-type functions in normed linear spaces. We deduce that a plus-cogauge is superlinear and continuous, if and only if it is superlinear on the normed space \(X\) and linear on a nontrivial subspace of \(X\). A cone separation theorem for closed radiant sets is obtained, which plays a key role in solving large-scale knowledge-based data classification problems. We shall also identify \(n\)-linear independent vectors in the Euclidean space to separate a closed radiant set from a point, which does not belong to the set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gerth (Tammer), C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Tammer, C.: A generalization of Ekeland’s variational principle. Optimization 25, 129–141 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Financ. 9, 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Financ. Stoch. 6, 429–447 (2002)

    Article  MATH  Google Scholar 

  6. Jaschke, S., Küchler, U.: Coherent risk measures and good-deal bounds. Financ. Stoch. 6, 181–200 (2001)

    Article  Google Scholar 

  7. Dutta, J., Martinez-Legaz, J.-E., Rubinov, A.M.: Monotonic analysis over cones: I. Optimization 53(2), 129–146 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hamel, A. H.: Translative sets and functions and their applications to risk measure theory and nonlinear separation. IMPA-Preprint 21, D (2006).

  9. Rubinov, A.M.: Abstract Convex Analysis and Global Optimization. Kluwer Academic Publishers, Boston, Dordrecht, London (2000)

    Book  Google Scholar 

  10. Shveidel, A.P.: Abstract convex sets with respect to the class of general min-type functions. Optimization 52, 571–579 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shveidel, A.P.: Further investigation of abstract convexity with respect to the class of general min-type functions. Optimization 56, 129–147 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rubinov, A.M., Sharikov, E.V.: Star-shaped separability with applications. J. Convex Anal. 13, 849–860 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Mohebi, H., Naraghi, E.: Cone-separation and star-shaped separability with applications. Nonlinear Anal. 69, 2412–2421 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zaffaroni, A.: Is every radiant function the sum of quasiconvex functions? Math. Oper. Res. 59, 221–233 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zaffaroni, A.: Superlinear separation and dual properties of radiant functions. Pac. J. Optim. 2, 171–192 (2006)

    MathSciNet  Google Scholar 

  16. Zaffaroni, A.: Superlinear separation for radiant and coradiant sets. Optimization 56, 267–285 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Martinez-Legaz, J.-E., Rubinov, A.M., Singer, I.: Downward sets and their separation and approximation properties. J. Global Optim. 23, 111–137 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rubinov, A.M., Singer, I.: Topical and sub-topical functions, downward sets and abstract convexity. Optimization 50, 307–351 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bagirov, A.M., Ugon, J., Webb, D.: An efficient algorithm for the incremental construction of a piecewise linear classifier. Inf. Syst. 36, 782–790 (2011)

    Article  Google Scholar 

  20. Bagirov, A.M., Ugon, J., Webb, D., Ozturk, G., Kasimbeyli, R.: A novel piecewise linear classifier based on polyhedral conic and maxâĂŞmin separabilities. Top. 21, 3–24 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Göpfert, A., Riahi, H., Tammer, C., Zalinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Book in Mathematics. Springer-Verlag, New York (2003)

    MATH  Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous referees and the editor for their valuable comments, which improved the presentation of the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Doagooei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doagooei, A.R. Minimum Type Functions, Plus-Cogauges, and Applications. J Optim Theory Appl 164, 551–564 (2015). https://doi.org/10.1007/s10957-014-0584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0584-9

Keywords

Mathematics Subject Classification

Navigation