Skip to main content
Log in

Regularized Penalty Method for General Equilibrium Problems in Banach Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the regularized version of the penalty method for a general equilibrium problem in a Banach space setting. We suggest weak coercivity conditions instead of (generalized) monotonicity and show that they also provide weak and strong convergence properties of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyak, B.T.: Introduction to Optimization. Nauka, Moscow (1983) (Engl. transl. in Optimization Software, New York, 1987)

  2. Vasil’ev, F.P.: Methods for Solving Extremal Problems. Nauka, Moscow (1981) [in Russian]

  3. Antipin, A.S., Vasil’ev, F.P.: A stabilization method for equilibrium programming problems with an approximately given set. Comput. Math. Math. Phys. 39, 1707–1714 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Gwinner, J.: On the penalty method for constrained variational inequalities. In: Hiriart-Urruty, J.-B., Oettli, W., Stoer, J. (eds.) Optimization: Theory and Algorithms, pp. 197–211. Marcel Dekker, New York (1981)

    Google Scholar 

  5. Muu, L.D., Oettli, W.: A Lagrangian penalty function method for monotone variational inequalities. Numer. Funct. Anal. Optim. 10, 1003–1017 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Konnov, I.V.: Regularization method for nonmonotone equilibrium problems. J. Nonlinear Convex Anal. 10, 93–101 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Konnov, I.V., Dyabilkin, D.A.: Nonmonotone equilibrium problems: coercivity conditions and weak regularization. J. Glob. Optim. 49, 575–587 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Konnov, I.V.: On penalty methods for non monotone equilibrium problems. J. Glob. Optim. 59, 131–138 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Konnov, I.V., Liu, Z.: Vector equilibrium problems on unbounded sets. Lobachevskii J. Math. 31, 232–238 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ky, Fan: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  11. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  12. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  14. Konnov, I.V.: Combined relaxation methods for generalized monotone variational inequalities. In: Konnov, I.V., Luc, D.T., Rubinov, A.M. (eds.) Generalized Convexity and Related Topics, pp. 3–31. Springer, Berlin (2007)

    Google Scholar 

  15. Nikaido, H., Isoda, K.: Note on noncooperative convex games. Pac. J. Math. 5, 807–815 (1955)

    Article  MathSciNet  Google Scholar 

  16. Podinovskii, V.V., Nogin, V.D.: Pareto-Optimal Solutions of Multiple Objective Problems. Nauka, Moscow (1982)

    Google Scholar 

  17. Bianchi, M., Pini, R.: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124, 79–92 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gwinner, J.: On the regularization of monotone variational inequalities. Oper. Res. Verfahren. 28, 374–386 (1978)

    MathSciNet  Google Scholar 

  19. Bakushinskii, A.B., Goncharskii, A.V.: Iterative Methods for Ill-Posed Problems. Nauka, Moscow (1989) [in Russian]

  20. Konnov, I.V., Ali, M.S.S.: Descent methods for monotone equilibrium problems in Banach spaces. J. Comput. Appl. Math. 188, 165–179 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Konnov, I.V., Ali, M.S.S., Mazurkevich, E.O.: Regularization of nonmonotone variational inequalities. Appl. Math. Optim. 53, 311–330 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the RFBR Grant, Project No. 13-01-00368a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Konnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konnov, I.V. Regularized Penalty Method for General Equilibrium Problems in Banach Spaces. J Optim Theory Appl 164, 500–513 (2015). https://doi.org/10.1007/s10957-014-0588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0588-5

Keywords

Mathematics Subject Classification (2000)

Navigation