Abstract
In this paper, we present a fast multiphase image segmentation model in a variational level set formulation. The proposed model is mainly used for images with inhomogeneity. The newly defined energy functional combines the local intensity information, the global intensity information, and the edge information to deal with the inhomogeneity. We use a weight function varying with locations to control the force of the local and global information dynamically. The special structure of the new energy functional ensures that the split Bregman method can be used for fast minimization. We apply the split Bregman method to minimize the new energy functional and summarize important results in several theorems. Theoretical evidences for these results are given. Several numerical results are also presented.


Similar content being viewed by others
References
Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1–3), 272–293 (2010)
Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Houhou, N., Thiran, J.P., Bresson, X.: Fast texture segmentation based on semi-local region descriptor and active contour. Numer. Math. Theor. Methods Appl. 2(4), 445–468 (2009)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)
Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)
Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization. Tech. rep., Rice University CAAM Technical Report TR07-10, Houston (2007)
Boyd, S., Vandenberghe, L.: Convex Optim. Cambridge University Press, Cambridge (2004)
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Secaucus (2006)
Yang, Y., Li, C., Kao, C., Osher, S.: Split Bregman method for minimization of region-scalable fitting energy for image segmentation. In: Proceedings of International Symposium on Visual Computing, vol. 6454 LNCS, pp. 117–128. Las Vegas (2010)
Yang, Y., Wu, B.: Convex image segmentation model based on local and global intensity fitting energy and split Bregman method. J. Appl. Math. 2012, 692589 (2012)
Yang, Y., Wu, B.: A new and fast multiphase image segmentation model for color images. Math. Probl. Eng. 2012, 494761 (2012)
Yang, Y., Wu, B.: Split Bregman method for minimization of improved active contour model combining local and global information dynamically. J. Math. Anal. Appl. 389(1), 351–366 (2012)
Wu, B., Yang, Y.: Local- and global-statistics-based active contour model for image segmentation. Math. Probl. Eng. 2012, 791958 (2012)
Yang, Y., Zhao, Y., Wu, B., Wang, H.: A fast multiphase image segmentation model for gray images. Comput. Math. Appl. 67(8), 1559–1581 (2014)
Vandeghinste, B., Goossens, B., Beenhouwer, J.D., Pizurica, A., Philips, W., Vandenberghe, S., Staelens, S.: Split-Bregman-based sparse-view CT reconstruction. In: 11th International meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pp. 431–434. Potsdam (2011)
Feng, J., Qin, C., Jia, K., Zhu, S., Liu, K., Han, D., Yang, X., Gao, Q., Tian, J.: Total variation regularization for bioluminescence tomography with the split Bregman method. Appl. Optics 51(19), 4501–4512 (2012)
Li, W., Li, Q., Gong, W., Tang, S.: Total variation blind deconvolution employing split Bregman iteration. J. Vis. Commun. Image Represent. 23(3), 409–417 (2012)
Zuo, Z., Zhang, T., Lan, X., Yan, L.: An adaptive non-local total variation blind deconvolution employing split Bregman iteration. Circuits Syst. Signal Process. 32(5), 2407–2421 (2013)
Yang, Y., Möller, M., Osher, S.: A dual split Bregman method for fast \(l^{1}\) minimization. Math. Comp. 82, 2061–2085 (2013)
Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)
Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. J. Comput. Med. Imaging Graphics 33(7), 520–531 (2009)
Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imag. Vis. 28, 151–167 (2007)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Yang, Y., Wu, B.: Fast multiphase image segmentation model for images with inhomogeneity. J. Electron. Imaging 21(1), 013015-1-14 (2012).
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)
Li, C., Kao, C., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–7. IEEE Computer Society, Washington, DC (2007)
Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)
Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)
Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput. 78(267), 1515–1536 (2009)
Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8(1), 93–111 (2010)
Xu, J., Osher, S.: Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Trans. Image Process. 16(2), 534–544 (2007)
Acknowledgments
This work is supported by the National Natural Science Foundation of China (No. 61301208), China Postdoctoral Science Foundation (No. 2013M531018), Natural Science Foundation Project of Guangdong (No. S2013040016230) and Shenzhen Fundamental Research Plan (Nos. JC201005260116A and JCYJ20120613144110654).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, Y., Zhao, Y. & Wu, B. Split Bregman Method for Minimization of Fast Multiphase Image Segmentation Model for Inhomogeneous Images. J Optim Theory Appl 166, 285–305 (2015). https://doi.org/10.1007/s10957-014-0597-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-014-0597-4