Skip to main content
Log in

Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Methods which do not use any derivative information are becoming popular among researchers, since they allow to solve many real-world engineering problems. Such problems are frequently characterized by the presence of discrete variables, which can further complicate the optimization process. In this paper, we propose derivative-free algorithms for solving continuously differentiable Mixed Integer NonLinear Programming problems with general nonlinear constraints and explicit handling of bound constraints on the problem variables. We use an exterior penalty approach to handle the general nonlinear constraints and a local search approach to take into account the presence of discrete variables. We show that the proposed algorithms globally converge to points satisfying different necessary optimality conditions. We report a computational experience and a comparison with a well-known derivative-free optimization software package, i.e., NOMAD, on a set of test problems. Furthermore, we employ the proposed methods and NOMAD to solve a real problem concerning the optimal design of an industrial electric motor. This allows to show that the method converging to the better extended stationary points obtains the best solution also from an applicative point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Available for download at: http://www.dis.uniroma1.it/~lucidi/DFL.

References

  1. Conn, A., Scheinberg, K., Vicente, L.: Introduction to Derivative-Free Optimization. MOS/SIAM Series on Optimization. SIAM, Philadelphia, MA (2009)

    Book  Google Scholar 

  2. Abramson, M., Audet, C., Chrissis, J., Walston, J.: Mesh adaptive direct search algorithms for mixed variable optimization. Optim. Lett. 3(1), 35–47 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Audet, C., Dennis Jr, J.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Audet, C., Dennis Jr, J.: Analysis of generalized pattern searches. SIAM J. Optim. 13(3), 889–903 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kolda, T., Lewis, R., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Audet, C., Dennis Jr, J.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11(3), 573–594 (2001)

    Article  MathSciNet  Google Scholar 

  8. Kokkolaras, M., Audet, C., Dennis Jr, J.: Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system. Optim. Eng. 2(1), 5–29 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Abramson, M.: Pattern search filter algorithms for mixed variable general constrained optimization problems. Ph.D. thesis, Department of Computational and Applied Mathematics, Rice University (2002)

  10. Abramson, M., Audet, C., Dennis Jr, J.: Filter pattern search algorithms for mixed variable constrained optimization problems. Pac. J. Optim. 3(3), 477–500 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Audet, C., Dennis Jr, J.: A pattern search filter method for nonlinear programming without derivatives. SIAM J. Optim. 14(4), 980–1010 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Vicente, L.: Implicitly and densely discrete black-box optimization problems. Optim. Lett. 3, 475–482 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lucidi, S., Piccialli, V., Sciandrone, M.: An algorithm model for mixed variable programming. SIAM J. Optim. 14, 1057–1084 (2005)

    Article  MathSciNet  Google Scholar 

  14. Lucidi, S., Sciandrone, M., Tseng, P.: Objective-derivative-free methods for constrained optimization. Math. Program. 92(1), 37–59 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. García-Palomares, U., Costa-Montenegro, E., Asorey-Cacheda, R., Gonzalez-Castano, F.J.: Adapting derivative free optimization methods to engineering models with discrete variables. Optim. Eng. 13, 579–594 (2012)

    MATH  MathSciNet  Google Scholar 

  16. García-Palomares, U., Rodríguez, J.: New sequential and parallel derivative-free algorithms for unconstrained optimization. SIAM J. Optim. 13(1), 79–96 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Müller, J., Shoemaker, C., Piché, R.: So-mi: a surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems. Comput. Oper. Res. 40(5), 1383–1400 (2013)

    Article  MathSciNet  Google Scholar 

  18. Laguna, M., Gortázar, F., Gallego, M., Duarte, A., Martí, R.: A black-box scatter search for optimization problems with integer variables. J. Glob. Optim. (2013). doi:10.1007/s10898-013-0061-2

  19. Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for bound constrained mixed-integer optimization. Comput. Optim. Appl. 53, 505–526 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liuzzi, G., Lucidi, S., Sciandrone, M.: Sequential penalty derivative-free methods for nonlinear constrained optimization. SIAM J. Optim. 20, 2814–2835 (2010)

    Article  MathSciNet  Google Scholar 

  21. Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput. Optim. Appl. 21(2), 119–142 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Vicente, L.: Worst case complexity of direct search. EURO J. Comput. Optim. 1, 143–153 (2013)

    Article  MATH  Google Scholar 

  23. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  24. Lin, C.J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A decomposition algorithm model for singly linearly constrained problems subject to lower and upper bounds. J. Optim. Theory Appl. 141, 107–126 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont, MA (1999)

    MATH  Google Scholar 

  26. Le Digabel, S.: Algorithm 909: Nomad: nonlinear optimization with the mads algorithm. ACM Trans. Math. Softw. 37(4), 1–15 (2011)

    Article  Google Scholar 

  27. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture notes in Economics and Mathematical Systems. Springer, Berlin (1981)

    Book  Google Scholar 

  28. Hock, W., Schittkowski, K.: More Test Examples for Nonlinear Programming Codes. Lecture notes in Economics and Mathematical Systems. Springer, Berlin (1987)

    Google Scholar 

  29. Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lucidi, S., Parasiliti, F., Rinaldi, F., Villani, M.: Finite element based multi-objective design optimization procedure of interior permanent magnet synchronous motors for wide constant-power region operation. IEEE Trans. Ind. Electron. 59(6), 2503–2514 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to two anonymous Reviewers whose many interesting suggestions and stimulating comments greatly helped us improving the paper. We thank Professors Franco Parasiliti and Marco Villani for providing us the optimal design problem and for giving useful insights and comments on the obtained results. Finally, we would like to mention that this work has been partially funded by the UE (ENIAC Joint Undertaking) in the MODERN project (ENIAC-120003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampaolo Liuzzi.

Appendix: Technical Result

Appendix: Technical Result

In this section, we report a technical result which is needed to prove convergence of DFL and EDFL. It is a slight modification of an analogous result reported in [20], which takes into account the presence of discrete variables.

Proposition 7.1

Let \(\{\epsilon _k\}\) be a bounded sequence of positive penalty parameters. Let \(\{x_k\}\) be a sequence of points such that \(x_k\in \mathcal{X}\cap \mathcal Z\) for all \(k\), and let \(\bar{x}\in \mathcal{X}\cap \mathcal Z\) be a limit point of a subsequence \(\{x_k\}_K\) for some infinite set \(K\subseteq \{0,1,\ldots \}\). Suppose that for each \(k\in K\) sufficiently large,

  1. (i)

    for all \(d^i\in D^c\cap D(\bar{x})\), there exist vectors \(y_k^i\) and scalars \(\eta _k^i>0\) such that

  2. (ii)
    $$\begin{aligned} \lim _{k\rightarrow \infty ,k\in K}\epsilon _k\Vert g^+(x_k)\Vert = 0; \end{aligned}$$
  3. (iii)
    $$\begin{aligned} (y_k^{i})_z = (x_k)_z,\qquad \text{ for } \text{ all }\ i\in I_c. \end{aligned}$$

Then, \(\bar{x}\) is a stationary point for Problem (1) with respect to the continuous variables, that is, \(\bar{x}\) satisfies (2) and (4) with \(\bar{\lambda }\in \mathbb {R}^m\) given by

$$\begin{aligned} \lim _{k\rightarrow \infty ,k\in K}\lambda _j(x_k;\epsilon _k) = \lim _{k\rightarrow \infty ,k\in K}\lambda _j(y_k^i;\epsilon _k) = \bar{\lambda }_j,\qquad \forall \ i\in I_c\ \text{ and }\ j=1,\ldots ,m, \end{aligned}$$

where \(\lambda _j(x;\epsilon )\), \(j=1,\ldots ,m\), are defined in (8).

Proof

Considering point (iii), namely that the discrete variables are held fixed in the considered subsequence, the proof is the same as that of Proposition 3.1 in [20]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liuzzi, G., Lucidi, S. & Rinaldi, F. Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems. J Optim Theory Appl 164, 933–965 (2015). https://doi.org/10.1007/s10957-014-0617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0617-4

Keywords

Mathematics Subject Classification

Navigation