Skip to main content
Log in

On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider a class of generalized Nash equilibrium problems, where both objective functions and constraints are allowed to depend on the decision variables of the other players. It is well known that this problem can be reformulated as a constrained optimization problem via the (regularized) Nikaido–Isoda-function, but this reformulation is usually nonsmooth. Here we observe that, under suitable conditions, this reformulation turns out to be the difference of two convex functions. This allows the application of the Toland-Singer duality theory in order to obtain a dual formulation, which provides an unconstrained and continuously differentiable optimization reformulation of the generalized Nash equilibrium problem. Moreover, based on a result from parametric optimization, the gradient of the unconstrained objective function is shown to be piecewise smooth. Some numerical results are presented to illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bensoussan, A.: Points de Nash dans le cas de fonctionnelles quadratiques et jeux differentiels lineaires a N personnes. SIAM J. Control 12, 460–499 (1974)

    Article  MathSciNet  Google Scholar 

  3. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991)

    Article  Google Scholar 

  4. Dietrich, H.: Optimal control problems for certain quasivariational inequalities. Optimization 49, 67–93 (2001)

    Article  MathSciNet  Google Scholar 

  5. Fukushima, M.: A class of gap functions for quasi-variational inequality problems. J. Ind. Manag. Optim. 3, 165–171 (2007)

    Article  MathSciNet  Google Scholar 

  6. Giannessi, F.: Separation of sets and gap functions for quasi-variational inequalities. In: Giannessi, F., Maugeri, A. (eds.) Variational Inequality and Network Equilibrium Problems, pp. 101–121. Plenum Press, New York (1995)

    Chapter  Google Scholar 

  7. Harms, N., Kanzow, C., Stein, O.: Smoothness properties of a regularized gap function for quasi-variational inequalities. Optim. Method. Softw. 29, 720–750 (2014)

    Article  MathSciNet  Google Scholar 

  8. Taji, K.: On gap functions for quasi-variational inequalities. Abstr. Appl. Anal. 2008, 7 p. (2008)

  9. Aussel, D., Correa, R., Marechal, M.: Gap functions for quasivariational inequalities and generalized Nash equilibrium problems. J. Optim. Theory Appl. 151, 474–488 (2011)

    Article  MathSciNet  Google Scholar 

  10. Kubota, K., Fukushima, M.: Gap function approach to the generalized Nash equilibrium problem. J. Optim. Theory Appl. 144, 511–531 (2010)

    Article  MathSciNet  Google Scholar 

  11. Nikaido, H., Isoda, K.: Note on noncooperative convex games. Pac. J. Math. 5, 807–815 (1955)

    Article  MathSciNet  Google Scholar 

  12. Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5, 63–73 (2000)

    Article  Google Scholar 

  13. Uryasev, S., Rubinstein, R.Y.: On relaxation algorithms in computation of noncooperative equilibria. IEEE T. Automat. Control 39, 1263–1267 (1994)

    Article  MathSciNet  Google Scholar 

  14. Gürkan, G., Pang, J.S.: Approximations of Nash equilibria. Math. Program. 117, 223–253 (2009)

    Article  MathSciNet  Google Scholar 

  15. Dreves, A., Kanzow, C.: Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems. Comput. Optim. Appl. 50, 23–48 (2011)

    Article  MathSciNet  Google Scholar 

  16. Dreves, A., Kanzow, C., Stein, O.: Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems. J. Global Optim. 53, 587–614 (2012)

    Article  MathSciNet  Google Scholar 

  17. Harms, N., Kanzow, C., Stein, O.: On differentiability properties of player convex generalized Nash equilibrium problems. Optimization doi:10.1080/02331934.2012.752822.

  18. von Heusinger, A., Kanzow, C.: Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions. Comput. Optim. Appl. 43, 353–377 (2009)

    Article  MathSciNet  Google Scholar 

  19. Harms, N., Hoheisel, T., Kanzow, C.: On a smooth dual gap function for a class of quasi-variational inequalities. J. Optim. Theory Appl. doi:10.1007/s10957-014-0536-4.

  20. Dietrich, H.: A smooth dual gap function solution to a class of quasivariational inequalities. J. Math. Anal. Appl. 235, 380–393 (1999)

    Article  MathSciNet  Google Scholar 

  21. Singer, I.: A Fenchel-Rockafellar type duality theorem for maximization. B. Aust. Math. Soc. 20, 193–198 (1979)

    Article  Google Scholar 

  22. Toland, J.F.: Duality in non-convex optimization. J. Math. Anal. Appl. 66, 399–415 (1978)

    Article  MathSciNet  Google Scholar 

  23. Toland, J.F.: A duality principle for non-convex optimisation and the calculus of variations. Arch. Ration. Mech. Anal. 71, 41–61 (1979)

    Article  MathSciNet  Google Scholar 

  24. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  25. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001)

    Book  Google Scholar 

  26. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-Linear Parametric Optimization. Birkhäuser, Basel (1983)

    Google Scholar 

  27. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  28. Dempe, S.: Foundations of Bilevel Programming. A Series of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  29. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York (1983)

    Google Scholar 

  30. Hogan, W.W.: Point-to-set maps in mathematical programming. SIAM Rev. 15, 591–603 (1973)

    Article  MathSciNet  Google Scholar 

  31. Ralph, D., Dempe, S.: Directional derivatives of the solution of a parametric nonlinear program. Math. Program. 70, 159–172 (1995)

    MathSciNet  Google Scholar 

  32. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vols I and II. Springer, New York (2003)

    Google Scholar 

  33. Pang, J.S., Ralph, D.: Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Math. Operat. Res. 21, 401–426 (1996)

    Article  MathSciNet  Google Scholar 

  34. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer, New York (2012)

    Book  Google Scholar 

  35. Janin, R.: Directional derivative of the marginal function in nonlinear programming. Math. Program. Stud. 21, 110–126 (1984)

    Article  MathSciNet  Google Scholar 

  36. Dempe, S., Pallaschke, D.: Quasidifferentiability of optimal solutions in parametric nonlinear optimization. Optimization 40, 1–24 (1997)

    Article  MathSciNet  Google Scholar 

  37. Bazaraa, M.S., Shetty, C.M.: Foundations of Optimization. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1976)

    Book  Google Scholar 

  38. von Heusinger, A., Kanzow, C., Fukushima, M.: Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation. Math. Program. 132, 99–123 (2012)

    Article  MathSciNet  Google Scholar 

  39. Horst, T., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103, 1–43 (1999)

    Article  MathSciNet  Google Scholar 

  40. Auslender, A.: Optimisation: Méthodes Numériques. Masson, Paris (1976)

    Google Scholar 

  41. Raydan, M.: The Barzilai and Borwein gradient method for the large unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

    Article  MathSciNet  Google Scholar 

  42. Scrimali, L.: Mixed behavior network equilibria and quasi-variational inequalities. J. Ind. Manag. Optim. 5, 363–379 (2009)

    Article  MathSciNet  Google Scholar 

  43. Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems (with complete test problems). Technical Report, Institute of Mathematics, University of Würzburg, Würzburg (2009)

  44. Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 20, 2228–2253 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the DFG (Deutsche Forschungsgemeinschaft) under Grant KA 1296/18-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kanzow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harms, N., Hoheisel, T. & Kanzow, C. On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems. J Optim Theory Appl 166, 659–685 (2015). https://doi.org/10.1007/s10957-014-0631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0631-6

Keywords

Mathematics Subject Classification

Navigation