Skip to main content
Log in

Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the present paper, we study the finite termination of sequences generated by inexact proximal point algorithms for finding zeroes of a maximal monotone (set-valued) operator \(T\) on a Hilbert space. Under some mild conditions, we get that a sequence generated by inexact proximal point algorithm stops after a finite number of iterations. Our results extend the corresponding results in Rockafellar (SIAM J Control Optim 14:877–898, 1976). In particular, for optimization problems, our results improve corresponding results in Ferris (Math Progr 50:359–366, 1991). As applications, we obtain finite termination of projected gradient method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krasnoselskii, M.A.: Two observations about the method of successive approximations. Uspehi Mat. Nauk. 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  2. Kryanev, A.V.: The solution of incorrectly posed problems by methods of successive approximations. Sov. Math. 14, 673–676 (1973)

    Google Scholar 

  3. Martinet, B.: Regularisation, d’inquations variationelles par approximations successives, Revue Franaise d’Informatique et de Recherche Operationelle, pp. 154–159 (1970)

  4. Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2, 649–664 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim. 22, 277–293 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Passty, G.B.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    Article  MathSciNet  Google Scholar 

  7. Lemaire, B.: The proximal algorithm. In: Penot, J.P. (ed.) New Methods of Optimization and Their Industrial Use. International Series of Numerical Mathematics, pp. 73–87. Birkhauser, Basel (1989)

    Google Scholar 

  8. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Progr. Ser. B. 116, 5–16 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burachik, R.S., Lopes, J.O., Da Silva, G.J.P.: An inexact interior point proximal method for the variational inequality problem. Comput. Appl. Math. 28, 15–36 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferris, M.C.: Finite termination of the proximal point algorithm. Math. Progr. 50, 359–366 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Progr. 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2010)

    Google Scholar 

  15. Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MATH  Google Scholar 

  16. Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kamimura, S., Takahashi, W.: Approximation solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory. 106, 226–240 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kamimura, S., Takahashi, W.: Weak and strong convergence of solutions to accretive oprator inclusions and applications. Set-Valued Anal. 8, 361–374 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MATH  Google Scholar 

  20. Boikanyo, O.A., Morosanu, G.: A proximal point algorithm converging strongly for general errors. Optim. Lett. 4, 635–641 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Boikanyo, O.A., Morosanu, G.: Inexact Halpern-type proximal point algorithm. J. Glob. Optim. 51, 11–26 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Boikanyo, O.A., Morosanu, G.: Four parameter proximal point algorithm. Nonlinear Anal. 74, 544–545 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Boikanyo, O.A., Morosanu, G.: Multi parameter proximal point algorithm. J. Nonlinear Convex Anal. 13, 221–231 (2012)

    MATH  MathSciNet  Google Scholar 

  24. Wang, F., Cui, H.: On the contraction-proximal point algorithms with multi-parameters. J. Glob. Optim. 54, 485–491 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Matsushita, S., Xu, L.: Finite termination of the proximal point algorithm in Banach spaces. J. Math. Anal. Appl. 387, 765–769 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Matsushita, S., Xu, L.: On Convergence of the proximal point algorithm in Banach spaces. Proc. Am. Math. Soc. USA 139(11), 4087–4095 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Browder, F.E., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 73, 875–881 (1967)

    MATH  MathSciNet  Google Scholar 

  28. Censor, Y., Iusem, A.N., Zenios, S.A.: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators. Math. Progr. 31, 373–400 (1998)

    MathSciNet  Google Scholar 

  29. Iusem, A.N.: On some properties of paramonotone operators. J. Convex Anal. 5, 269–278 (1998)

    MATH  MathSciNet  Google Scholar 

  30. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  31. Polyak, B.T.: Introduction to Optimization. Optimization software Inc., New York (1987)

    Google Scholar 

  32. Moreau, J.J.: Proximitéet dualité dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    MATH  MathSciNet  Google Scholar 

  33. Burke, J.V., Deng, S.: Weak sharp minima revisited, I: Basic theory. Control Cybernet. 31, 439–469 (2002)

    MATH  MathSciNet  Google Scholar 

  34. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Cromme, L.: Strong uniqueness. A far-reaching criterion for the convergence analysis of iterative procedures. Numer. Math. 29(2), 179–193 (1977–1978)

  36. Burke, J.V., Deng, S.: Weak sharp minima revisited. II. Application to linear regularity and error bounds. Math. Progr. Ser. B. 104(2–3), 235–261 (2005)

  37. Burke, J.V., Deng, S.: Weak sharp minima revisited. III. Error bounds for differentiable convex inclusions. Math. Progr. Ser. B. 116(1–2), 37–56 (2009)

  38. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Alber, Y.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Progr. Ser. A. 81(1), 23–35 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Progr. 39, 93–116 (1987)

    Article  MATH  Google Scholar 

  41. Iusem, A.N.: On the convergence properties of the projected gradient method for convex optimization. Comput. Appl. Math. 22(1), 37–52 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Burke, J.V., Ferris, M.C.: Characterization of solution sets of convex programs. Oper. Res. Lett. 10, 57–60 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  43. Mangasarian, O.L.: Error bounds for nondegenerate monotone linear complementarity problems. Math. Progr. 48, 437–446 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mangasarian, O.L., Meyer, R.R.: Nonlinear perturbation of linear programs. SIAM J. Control Optim. 17, 745–752 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the referees and the editor for their valuable comments and constructive suggestions which improve the presentation of this manuscript. Research of the first author is supported in part by the National Natural Science Foundation of China (Grant 11371325) and by Zhejiang Provincial Natural Science Foundation of China (Grant LY13A010011). Research of the second author is supported in part by the National Natural Science Foundation of China (Grant 11171300). Research of the third author was partially supported by the National Science Council of Taiwan under Grant NSC 102-2115-M-037-002-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Wang.

Additional information

Communicated by Viorel Barbu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.H., Li, C. & Yao, JC. Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces. J Optim Theory Appl 166, 188–212 (2015). https://doi.org/10.1007/s10957-014-0689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0689-1

Keywords

Mathematics Subject Classification

Navigation