Skip to main content
Log in

A Variational Approach to Neumann Stochastic Semi-Linear Equations Modeling the Thermostatic Control

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the present paper, we prove existence and uniqueness of a mild solution for a stochastic semi-linear equation with Neumann boundary conditions, using only general monotonicity assumptions. The study of this equation is motivated by physical applications as the model of the temperature control through the boundary. The result is proved by using an optimal control approach based on the variational principle of Brezis and Ekeland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pardoux, E.: Equations aux derivees partielles stochastiques nonlineaires monotones. Universite Paris, These (1975)

  2. Krylov, N.V., Rozowskii, B.L.: Stochastic evolution equations. Current problems in mathematics, vol. 14, 71–147 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow (1979)

  3. Liu, W., Röckner, M.: SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal. 259, 2902–2922 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Liu, W., Röckner, M.: Local and global well-posedness of SPDE with generalized coercitivity conditions. J. Differ. Equ. 254, 725–755 (2013)

    Article  MATH  Google Scholar 

  5. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  6. Prevot, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Monograph, Lectures Notes in Mathematics. Springer, Berlin (2006)

    Google Scholar 

  7. Barbu, V., Bonaccorsi, S., Tubaro, L.: A stochastic heat equation with nonlinear dissipation on the boundary. J. Optim. Theory Appl. 165(2), 317–343 (2015)

    Article  MathSciNet  Google Scholar 

  8. Brezis, H., Ekeland, I.: Un principe variationnell associ é à certaines équations paraboliques. Le cas indépendent de temps. C.R. Acad. Sci. Paris 282, 971–974 (1976)

    MATH  MathSciNet  Google Scholar 

  9. Brezis, H., Ekeland, I.: Un principe variationnell associ é à certaines équations paraboliques. Le cas dépendent de temps. C.R. Acad. Sci. Paris 282, 1197–1198 (1976)

    MATH  MathSciNet  Google Scholar 

  10. Marinoschi, G.: Existence to time-dependent nonlinear diffusion equations via convex optimization. J. Optim. Theory Appl. 154(3), 792–817 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Marinoschi, G.: A variational approach to nonlinear diffusion equations with time periodic coefficients. Ann. Univ. Buchar. (Mathematical Series) 3(LXI), 173–185 (2012)

    MathSciNet  Google Scholar 

  12. Barbu, V.: A variational approach to stochastic nonlinear parabolic problems. J. Math. Anal. Appl. 384, 2–15 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Barbu, V.: Optimal control approach to nonlinear diffusion equations driven by Wiener noise. J. Optim. Theory Appl. 153, 1–26 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ciotir, I.: Existence for the Neumann stochastic semi-linear equations via an optimal control approach (abstract). In: The Proceedings of the International Symposium on Mathematical Theory of Networks and Systems (2014)

  15. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. D. Reidel Publishing, Dordrecht 1986, New Edition Springer (2010)

  16. Rockafeller, R.T.: Convex Analysis. Princeton University Press, Princeton (1969)

    Google Scholar 

  17. Rockafeller, R.T.: Integrals which are convex functional. Pac. J. Math. 24, 525–539 (1968)

    Article  Google Scholar 

  18. Rockafeller, R.T.: Integrals which are convex functional. II. Pac. J. Math. 29, 439–469 (1971)

    Article  Google Scholar 

  19. Adams, R., Fournier, J.F.: Sobolev Spaces, Elsevier, Pure and Applied Mathematics, vol. 140, Second Edition (2003)

  20. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  21. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  22. Lions, J.L., Magenes, E.: Problèmes aux limites non homigènes et applications. Dunod, Gauthier-Villars (1970)

    Google Scholar 

  23. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Acad Press, Boston (1993)

    MATH  Google Scholar 

  24. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  25. Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solution for stochastic porous media equations under general monotonicity conditions. Ann. Probab. 37(2), 428–452 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Romanian National Authority for Scientific Research, CNCS-UEFISCDI (Romania) grant PN-II-RU-PD-2012-3-0240. The author would like to thank Professor Viorel Barbu for helpful comments and the anonymous referee for constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioana Ciotir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciotir, I. A Variational Approach to Neumann Stochastic Semi-Linear Equations Modeling the Thermostatic Control. J Optim Theory Appl 167, 1095–1111 (2015). https://doi.org/10.1007/s10957-015-0787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0787-8

Keywords

Mathematics Subject Classification

Navigation