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Abstract Nonsmooth equation-solving and optimization algorithntsch require
local sensitivity information are extended to systems witmsmooth parametric
differential-algebraic equations embedded. Nonsmodferdntial-algebraic equa-
tions refers here to semi-explicit differential-algelraguations with algebraic equa-
tions satisfying local Lipschitz continuity and differétright-hand side functions
satisfying Carathéodory-like conditions. Using lexicaghic differentiation, an aux-
iliary nonsmooth differential-algebraic equation sysismbtained whose unique so-

lution furnishes the desired parametric sensitivitiesrd/fpecifically, lexicographic
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derivatives of solutions of nonsmooth parametric diff¢isdralgebraic equations are
obtained. Lexicographic derivatives have been shown tddraents of the plenary
hull of the (Clarke) generalized Jacobian and thus comjouaily relevant in the

aforementioned algorithms. To accomplish this goal, txetegraphic smoothness
of an extended implicit function is proved. Moreover, thgemeralized derivative
elements can be calculated in tractable ways thanks totradeancements in nons-
mooth analysis. Forward sensitivity functions for nonsthqmarametric differential-

algebraic equations are therefore characterized, extgtidé classical sensitivity re-

sults for smooth parametric differential-algebraic ere.

Keywords Generalized JacobiansSensitivity analysis Nonsmooth analysis

Optimization- Parametric uncertainty

Mathematics Subject Classification (200049J52- 34A09- 90C31

1 Introduction

Algorithms for nonsmooth equation-solving (e.g., semisthdNewton methods [1,
2] and LP-Newton methods [3]) and nonsmooth optimizatiog.(dundle methods
for local optimization [4—6]) require sensitivity inforriian for which many current
theoretical and computational approaches are lackinge@cogress has been made
in tractable algorithms [7] for obtaining elements of a slabgeneralized derivative,
using lexicographic differentiation [8] to calculate leagraphic directional deriva-
tives, as introduced in [7]. Applicable to lexicographigamooth functions (which

includes all differentiable functions, convex functioasdPC?! functions in the sense
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of Scholtes [9]), this approach has been used to furnish otatipnally relevant gen-
eralized derivatives for parametric ordinary-differahiquations (ODESs) with nons-
mooth right-hand sides [10]; hybrid systems, inverse fianst, and implicit functions
[11]; ODEs with linear programs embedded [12]; and nonsimagttimal control

problems with nonsmooth ODEs embedded [13].

With applications in mechanical, electrical, and cheméecrgineering, differential-
algebraic equations (DAES, also called singular or desargystems) have become
a widely applied modeling tool [14]. Narrowing the focus mononsmooth DAEs
provide a natural modeling framework for a number of phylgit@nomena found in
engineering and applied mathematics such as campaigmaoons pharmaceutical
manufacturing (see, e.g., [15-17]). In this paper, geimgdlderivative notions from
nonsmooth analysis are used (for background, the readsfeised to [9, 18—-20] and
the references therein). Elements of the plenary hull ofiéla generalized Jacobian
comprise the desired sensitivity information for the noosth algorithms described
earlier. As DAEs pose a number of theoretical and numerif#dulties over ODEs
(see, e.g., [14, 21-24] and the references therein), tlk@sixin of the aforementioned
lexicographic differentiation theory to nonsmooth DAEguies careful considera-

tion.

Numerous studies have been completed on forward and adjeisitivities of
smooth DAEs (see, e.g., [25, 26] and the references thetsibjid and discontinu-
ous systems (see, e.g., [27-29]), and oscillating syst8fMs3[L]. However, the theo-
retical tools and findings in these works are not applicable ldue to incompatible

assumptions. Clarke first derived a result on generalizedbians of solutions of
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nonsmooth parametric ODEs [18, Theorem 7.4.1]. Pang aila&t§32, Theorem
11, Corollary 12] proved that such generalized Jacobiaersaps are linear Newton
approximations (LNAs, see [19] for details) when the ODHtigand side functions
are semismooth in the sense of Qi [2]. Pang and Stewart [88]dlpplied their ODE
sensitivity results to differential variational inequeds (DVIs), as introduced in [33],
with differentiable ODE right-hand side functions and diffntiable variational con-
dition functions; the authors calculated directional datives of local solutions of
DVIs and obtained LNAs of the solution map about an initialadpoint. As DVIs
can be expressed as a class of DAEs with specialized ste,tha@results in [32] are
restricted to a subclass of nonsmooth DAEs with differdii@® DE right-hand side
functions and nonsmooth algebraic equations. Furthernhdt&s have been shown
to not necessarily satisfy desirable properties which atisfeed by generalized Ja-
cobians, such as LNAs of differentiable functions contagnélements other than the
Jacobian evaluated at said point (see [10, Example 4.2]HhdExample 1.1]) and
LNAs of convex scalar-valued functions including elemehtg are not subgradients

[10].

Khan and Barton [10] derived a method for obtaining lexiegnic derivatives
of the unique solution of parametric Carathéodory ODEmftbe unique solution of
an auxiliary ODE system obtained via the lexicographicaiomal derivative chain
rule [7]. The findings in [10] are a natural extension of thassical sensitivity results
for smooth parametric ODE systems obtained via the cldssian rule (see, e.g.,
[34, Chap. V]). As a subset of the plenary Jacobian, elemafntise lexicographic

subdifferential have been shown to be computationallyegiein many applications
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[10], including the nonsmooth algorithms detailed earlMoreover, as a key prop-
erty of the lexicographic directional derivative is thasittisfies strict calculus rules,
the implementation of a vector forward mode of automatifedéntiation to calculate

elements of the plenary Jacobian is therefore possible [7].

The main contribution of the current article is the develepiof a suitable theory
for obtaining generalized derivative elements of solwtiohnonsmooth parametric
DAEs. In the spirit of [10], lexicographic derivatives (atiterefore elements of the
plenary Jacobian) of unique solutions of Carathéodorgxatl semi-explicit DAEs
are obtained from the unique solution of an auxiliary nonsthdAE system via
the lexicographic directional derivative chain rule. Eivge derive the lexicographic
smoothness of the extended implicit function construatg@5b] inherited from lex-
icographic smoothness of the participating functions. dmgd so, it is possible to
formulate the nonsmooth DAEs as equivalent parametrictG@oalory ODES on an
open and connected set containing the unique solution. 8imtivity theory devel-
oped here applies to DAEs for which existing methods fail,ahdnks to the strict
calculus rules of the lexicographic directional derivatilays the theoretical ground-
work upon which efficient numerical implementations can bsighed. Methods for
nonsmooth equation-solving and nonsmooth optimizatientlams extended to sys-

tems with nonsmooth parametric DAEs embedded.

The rest of this article is organized as follows. Necessagkground in nons-
mooth analysis is presented in Section 2. Lexicographicoshmess of extended im-

plicit functions is proved in Section 3. Generalized derixes of nonsmooth DAES
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are calculated in Section 4. Examples are given in Sectiordxancluding remarks

are provided in Section 6.

2 Preliminaries

The notational conventions here largely echo those sethdut iL0]. The set of pos-
itive integers is denoted hy and the set of nonnegative real numbers is denoted by
R.. The vector spac®" is equipped with the Euclidean norjn || and the vector
spaceR™" is equipped with the corresponding induced norm. Sets aretdd by
uppercase letters (e.¢fl), matrices inR™" and matrix-valued functions are denoted
by uppercase boldface letters (eld), elements oR and scalar-valued functions are
denoted by lowercase letters (elg., and vectors irR" and vector-valued functions
are denoted by lowercase boldface letters (&.)9.The zero vector ifR" is denoted

by On, the m x n zero matrix is denoted b, and then x n identity matrix is

denoted by,,. A well-defined vertical block matrix (or vector):

Hi

H>
can be written agHq,H>). Theith component of a vectdr is denoted byh;. Paren-
thetical subscripts may be used to indicate the column vedta matrix (e.g., the
matrix H has thek!" column h), or to indicate a sequence of vectors or vector-
valued functions. Parenthetical superscripts (8¢)) are used for lexicographic dif-
ferentiation.

The open and closed balls of radius>¥ 0 centered ath € R" are denoted by

Br(h) andB (h), respectively. Aneighborhood oh € R" is a set of point8(h) for
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somed > 0. A neighborhood of H- R" is given byBs(H) := UnenBg(h) for some
0 > 0. Given a seH C R", its convex hull is denoted by cohl. A set of matrices
H c R™" is said to be ofmaximal rankif it contains no singular matrices. Given
Ny, Ny,N; € NandwW € R™ x R x R", theprojections of W ont®"™ andR™ x R"Y
are given by, respectively,
W = {Nx € R™:3(Nx,Ny,Nz) € W} CR™,

TyW = {(Nx,Ny) € R™ X RY : 3(Nx,Ny,Nz) €W} CR™ xRV,

The shadows of W ay € iyW with respect taR™ andR™ x R" are given by, re-

spectively,
T&(W,Y) = T&{(nhny;nZ) EW : ny = y} C Rnx7
T z(W;Y) == Thz{ (Nx. Ny, Nz) EW:Ny =y} CR™ x R™.

Theshadow of W atx,y) € m,W with respect tR" is given by

B(W; (X,Y)) := T&{(Nx,Ny,Nz) €W : (Nx,Ny) = (X,y)} CR™.

Givenng € N, W, C T8W, (X,y,z) € W, andf : W — R", the cross-section of at

X € TEW is given by

fx : T&Z(W;X) - an : (ny,’h) = f(xany,nz)~

TheW-blind cross-section dfat x is given by

f(X,ny,nz), Xe TB(W\V\&,
fwg : Thz(W;x) — R 2 (ny,nz) —

Ong> X € W.

The other non-vacuous projections, shadows, cross-ssdiad blind cross-sections

are defined similarly.
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2.1 Generalized Derivatives

Let X C R" be an open set arfd X — R™. Given thatf is (Fréchet) differentiable
at x € X, its (Fréchet) derivative is called thlacobian matrixand is denoted by
Jf(x) € R™". The functionf is said to bedifferentiable on Xif f is differentiable
at each poink € X. The functionf is said to becontinuously differentiable & at
x € X if f is differentiable on a neighborhodt{x) C X of x andJf : N(x) — R™"is
continuous o (x). The functiorf is said to beC! on Xif f isC* at each poink € X.
As defined by Scholtes [9],is said to bepiecewise differentiable (PEatx € X if
there exist a neighborhodd(x) X of x and a finite collection o€* functions on

N(x), {f(1),---,f@}, such that is continuous oMN(x) and

f(n) € {fi(n) i €{1,....,k}}, Vo €N(x).

f is said to bePC! on Xif f is PC! at each poink € X.

Let f be locally Lipschitz continuous oK. It follows thatf is differentiable at
each poink € X\ Zs, whereZ; C X has zero (Lebesgue) measure, by Rademacher’s
Theorem. Clarke [18] established the following definitiarsl results concerning

generalized derivatives. THsubdifferentiabf f atx € X is defined as

dsf(x) := {,Iim Jf(Xgiy) T lim Xy =X, X4y € X\ Z,Vie N}.

|—o00 |—o00

The Clarke (generalizedpcobianof f atx € X is defined as

of(x) := convdsf(x).
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For a pointx € X, dgf(x) is necessarily nonempty and compact, widgif¢x) is nec-
essarily nonempty, compact, and convex.iff differentiable ak thenJf(x) € 9f(x).
If fis C! atx thendf(x) = dgf(x) = {If(x)}.

Theplenary Jacobiarf f atx € X [36] is defined as
Opf(x) :={M e R™":vd € R",3H € 9f(x) s.t.Md = Hd}.

As the name suggests, the plenary Jacobidrabk is the plenary hull of its Clarke
Jacobian ak (see [36] for details on plenary sets and plenary hullsk the inter-
section of all plenary supersets 8f(x), which includes all linear transformations
for which images are indistinguishable. As demonstratedityert [37], dpf(X) is

nonempty, compact, convex, and satisfies
m
of(x) C gpf(x) C rlafi (x).
i=

As pointed out in [10], if migm,n} = 1 thendf(x) = dpf(x). Moreover, ifm=n
and if f(x) is of maximal rank then a similar relationship holds betwemrages of

inverses of elements @ff (x) anddpf(x):
(HMeR":Hedkf(x)}={H deR":Hecdf(x)}, VvdeR"

As a consequence of these observations, elements of tharpléscobian are no less
useful than elements of the Clarke Jacobian in any of theviafig: bundle meth-

ods for finding local minima for nonsmooth nonlinear progsaisince the objective
function is scalar-valued), semismooth Newton methodarkéls mean value the-
orem [18, Proposition 2.6.5], and Clarke’s inverse functibeorem [18, Theorem

7.1.1].
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Givenny,ny,nz,ng € N, W C R™ x R x R"™ open, andy : W — R" Lipschitz
continuous on a neighborhood ¢f,y,z) € W, the Clarke (generalizedjacobian

projectionsof g at (x,y,z) are defined as

50g(x,y,2) ;= {M € R™™:3M N1 Ng]€dg(x,y,2)},
BIY(x,y,z) == {M €R™™: 3Ny M N2 €dg(xy,2)},

T®309(X,Y,2) i= {[Ml M) € RV - 3N My My € dg(x,y,z)},

with 1899(X,Y,2), T0.209(X,Y,2), and g 399(X,Y,z) defined similarly. Ifg is C* at

(x,y,z) then

madatcy.?) = { | Fixya oy}

2.2 Lexicographic Differentiation

Nesterov [8] introduced lexicographically smooth funo8ocand the lexicographic
(generalized) derivative. GiveX C R" open and : X — R™, thedirectional deriva-

tive of f atx € X in the directiond € R" is given by

f(x+ad) —f(x)

3

I~ T
f'(x;d) := Ioer) a

if it exists. The functiorf is said to balirectionally differentiable ax if f'(x;d) exists
and is finite for alld € R". Given thatf is locally Lipschitz continuous oiX, f is
said to belexicographically smooth (L-smooth) ate X if for any k € N and any

M :=[mg) - myl € R™K, the following higher-order directional derivatives are
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well-defined:

x—h
=z

— g
N “zc

x
<

‘R"— RM

‘RT"— R™M:

‘RT"— R™M:

ff(kg\,, ‘RT—R™M:

| d e [f85, ) (Mo d).

The functiorf is said to bdexicographically smooth (L-smooth) onidt is L-smooth
at each poink € X. The class of L-smooth functions is closed under compasidad
includes allC! functions, convex functions [8], arRIC! functions [7] in the sense of
Scholtes [9]. Given any nonsingular mathk € R™" andf : X — R™ L-smooth at

x € X, the mappingf:,f,, :R" — R™Mis linear and thdéexicographic (L-)derivativef

f atx in the directionsv is

ILFGM) == I, (0n) € R™N,

s

Thelexicographic subdifferentiadf f atx is defined as
aLf(x) :={ILF(x;N) : N € R™" detN # 0}.

If f is differentiable ak thend f(x) = {Jf(x)} and ifm= 1 thenad_ f(x) C df(x).
The lexicographic directional derivative was introducgddtan and Barton [7]:

givenanyk e N, anyM :=[my) --- my] € R™K andf: X — R™L-smooth ax € X,

the lexicographic directional (LD-)derivativef f atx in the directionaM is defined

as
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Note thatf'(x;M) is uniquely defined for alM € R™K and allk € N. The LD-
derivative adopts its name becausea/ifis square and nonsingular then it follows
thatf'(x;M) = JLf(x; M)M. If f is differentiable ak thenf'(x;M) = Jf(x)M. If M
has one column, the LD-derivative is equivalent to the dioe@l derivative. Unlike

the generalized Jacobian, the LD-derivative obeys a sthniain rule [7].

Theorem 2.1 Let XC R",Y C R™be open andh: X — Y andg:Y — RY be locally
Lipschitz functions on X and Y, respectively. hetndg be L-smooth ak € X and
h(x) € Y, respectively. Then the compositignh is L-smooth ai; for any ke N

and anyM e R™K, the chain rule for LD-derivatives is given as:
[goh]’(x;M) =g/ (h(x);h'(x;M)). (1)

Theorem 2.1 reduces to Nesterov’s chain rule [8, Theoremhgnwthe matrix
M is square and nonsingular, and reduces to the classical ollai wheng andh
are both differentiable. Significantly, the strict chaiterof Theorem 2.1 allows for
the development of a vector forward mode of automatic dffiéiation to calculate

LD-derivatives [7].

2.3 Generalized Derivatives of Ordinary Differential Ejaas

Given an open set C R" andf : X — RMthat is L-smooth ax € X, . f(x) C dpf(X)
[10]. If f is PC! at x thenf is L-smooth atx andd,f(x) C dgf(x) [7]. Prompted by
these relations and the discussions in Section 2.1 on tHalosss of elements of
the plenary Jacobian, obtaining an elementdf(x) is therefore just as useful as

an element of the Clarke Jacobian in a variety of applicatiand can be furnished



Generalized Derivatives of Differential-Algebraic Eqoas 13

via computing’(x; M) for a square and nonsingular mathikand solving the linear
equation systerfl(x;M) = J_f(x;M)M [7]. Motivated by these observations, Khan
and Barton found LD-derivatives of nonsmooth parametrid@IDLO, Theorem 4.2],
which is restated here for parametric ODEs whose right-tséohe functions depend
explicitly on parameters by virtue of its proof and the reksdpllowing Example 4.2

in [10].

Theorem 2.2 Let ny,ny € N, np = 1, D C R™ x R" x R™ be open and connected,
to,t; € rgD satisfy § < tr, and Z be a zero-measure subsefipft¢]. Letf: D — R™

andfq : D — 1%D. Assume that the following conditions are satisfied:

(i) f(-,p,n) is measurable offty, ] for each(p,n) € myxD;

(ii) f(t,-,-) is L-smooth o, x(D;t) for each te [to,tf] \ Zs;

(iii) there exist Lebesgue integrable functionsr : [tp,tf] — R U{+o} for which:
@) [Ift;p,m) | <me(t), Vtelto,ts], V(p,N) € mx(Dit);
(b) [If(t,pa,n1) —f(t,p2,n2)[| < ke (V)] (P1, 1) — (P2, N2)l[, Wt € [to, ],

V(p1,N1),(P2,N2) € Myx(D;t);
(iv) fois L-smooth omg,D;
(v) for somepg € D, there exists a solutior(-, pg) of the following parametric

ODE system ap := po:
x(t,p) =f(t,x(t,p)), a.e.te [to,ts],
X(to,p) =fo(p),

which satisfieq (t, po, X(t,po)) : t € [to,tf]} C D. Then, for each & [to,t¢], the map-

ping x = X(t,-) is Lipschitz continuous on a neighborhoodmf with a Lipschitz
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constant that is independent of t. Moreoverjs L-smooth apg; for any ke N and
anyM e R"k, the LD-derivative mappind : [to,t;] — R™*K:t — [x)/(po;M) is

the unique solution ofto,t] of the following ODE system:

X(t) = [ft\Zf],(vax(t’ po)’ (M 7X(t)))a
2)
X(to) = [fol'(Po; M).
Remark 2.1The right-hand side functioft,A) — [fy z]' (Po, X(t, Po); (M, A)) in (2)
is measurable with respect tdut not necessarily continuous with respecidt@at
almost every € [to,t¢] (see [10, Example 4.1]). However, the columns of (2) can be
decoupled to yield a sequencelo€arathéodory ODEs [10, Corollary 4.2]. Conse-

quently, thek columns of the matrix-valued functidn— [x]’(po; M) are absolutely

continuous vector-valued functions mappltgt] to R™.

3 Lexicographic Smoothness of Extended Implicit Functions

Clarke provided local inverse and implicit function themsefor locally Lipschitz
continuous functions [18], but without generalized derixadescriptions for said
nonsmooth inverse and implicit functions. Levy and Mordokich [38] derived an
implicit function theorem for coderivatives. Extendingttesults of Scholtes [9, The-
orem 3.2.3] concerning directional derivative informati&han and Barton [11] es-
tablished results on the lexicographic smoothness of logalse and implicit func-
tions and their corresponding LD-derivatives. For congagewith the present arti-
cle, the L-smooth implicit function result in [11] is restdtwith a stricter sufficient
condition concerning projections of Clarke Jacobians {eeediscussion following

Theorem 2 in [11]).



Generalized Derivatives of Differential-Algebraic Eqoas 15

Theorem 3.1 Let W C R" x R™ be open. Suppose thgt: W — R™ is L-smooth
at (x*,y*) e W, g(x*,y*) = Om, and redg(x*,y*) is of maximal rank. Then there
exist neighborhoods (*) C W and Nx*,y*) C W ofx* and(x*,y*), respectively,
and a functiorr : N(x*) — R™ that is Lipschitz continuous on(X*) such that, for
eachx € N(x*), (x,r(x)) is the unique vector in [*,y*) satisfyingg(x,r (X)) = Om.
Moreovery is L-smooth ak*; for any ke N and anyM € R™K, the LD-derivative

r’(x*;M) is the unique solutiol € R™X of the equation system
g' (X", y"; (M,N)) = Ok 3)

In [35], an extended implicit function theorem was providedocally Lipschitz
continuous functions. The lexicographic smoothness oh sarc extended implicit

function is detailed in the next result.

Theorem 3.2 LetWC R" x R™be open and2 C W be a compact set such that each
x € Tk Q is the projection of only one poifix,y) € Q. Suppose thaj: W — RMis L-
smooth on Wg(Q) = {Om}, andmdg(x,y) is of maximal rank for eacfx,y) € Q.
Then there exisd, p > 0 and a functiorr : B5(Q) C W — R™ that is Lipschitz
continuous and L-smooth onsB%Q) such thatredg(x,y) is of maximal rank for
all (x,y) € Bp(Q2) Cc W and, for eaclx € B5(1%Q), (x,r(x)) is the unique vector in
B (Q) satisfyingg(x,r(x)) = Om. Moreover, for any € B5(7%Q), any ke N, and

anyM € R™K r’(x;M) is the unique solutiohl € R™k of the equation system
g (%1 (x); (M,N)) = Ok (4)
Proof By [35, Theorem 3.6], there exiéi, p; > 0 and a function

ri:Bs (%Q) C W — R™
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that is Lipschitz continuous 0B, (75Q) such thatpdg(x,y) is of maximal rank for
all (x,y) € Bp, (Q) C W and, for eachx € Bs (T%Q), (X,r1(x)) is the unique vector
in By, (Q) satisfyingg(x,r1(x)) = Om.

Let Q := {(x,r1(x)) : x € Bysg, (TkQ2) } € By, (2) € W, which is a compact set
such that each point € &Q = ETO.551(7&Q) C Bs, (1&Q) is the projection of only
one point inQ (namely,(x,r1(x))). Moreover,meg(x,y) is of maximal rank for all
(x,y) € Q C By, (Q) andg(Q) = {Om}. Therefore, [35, Theorem 3.6] can be applied

once more to yield the existence &f p, > 0 and a function
r2: B, (mQ) C TRW — R™

that is Lipschitz continuous dﬁcgz(ﬂi(.é) such thatudg(x,y) is of maximal rank for
all (x,y) € B, (Q) C W and, for eacl € Bg, (15Q), (X,r2(x)) is the unique vector
in By, (Q) satisfyingg(x,r2(x)) = Om.

Choose any € Q. By virtue of the proof of [35, Theorem 3.6], there exist a

neighborhoodN(X) C T5W of X and a Lipschitz continuous function

rg :N(X) — R™
such thag(k,y) = Om, wherey :=r¢(X), andmdg(X,¥) is of maximal rank. More-
over,rg =r on N(X) N r&f). By Theorem 3.1r4 is L-smooth afX; for anyk € N
and anyM € R™K, [rg] (&;M) = [r2]'(X; M) is the unique solutiolN € R™K of the

equation system
Omxk =9 (&,9:(M,N)) = g'(&,r2(%); (M, N)).
Letd :=0.50,, p ;= p1, and

r:Bs(mQ) Cc mW —R™:n—ra(n).
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r is Lipschitz continuous 0B5(1%Q) C T&Q C By, (1%Q) andedg(x,y) is of max-

imal rank for all(x,y) € Bp(Q) = Bp,(Q) C W. By uniqueness,; = r, on the set

By, (T6Q) N By, (T&Q2) D Bs(m&Q); for eachx € B(1%Q),

(X,1(x)) = (x,r1(x)) = (X,r2(x))

is the unique vector By, (Q) satisfyingg(x,r (X)) = Om. Moreover,r is L-smooth
onBs(T&Q) C mQ; for anyx € B5(%Q), anyk € N, and anyM € R™K, the LD-
derivativer’(x;M) = [r2)'(x;M) is the unique solutioN € R™K of the equation

system

Omxk = g/(X, rZ(X); (M ) N)) = g/(X, r (X), (M ’ N))

Remark 3.1The implicit functionr outlined in the statement of Theorem 3.2 is L-
smooth on its open domay(7%Q) D 1 Q, which is needed for the higher-order
directional derivatives outlined earlier to be well-detirsnd is essential for the anal-
ysis to follow. The fact that is also Lipschitz continuous dBs(75%Q) is not imme-
diately implied by its L-smoothness. Moreover, wh@ris a singleton, Theorem 3.1

is recovered.

4 Forward Sensitivity Functions for Nonsmooth Differentia-Algebraic

Equations

Let np,nx,ny € N. Let Dy C R, Dp € R™, Dy C R, andDy C R™ be open and

connected. LeD := Dy x Dp x Dy x Dy, f: D — R™, g: D — R", andfg : Dp — Dx.
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Giventy € Dy, consider the following initial-value problem (IVP) in seexplicit

DAEs:

X(tap) = f(t,p,X(t,p),y(t,p)), (5a)
Ony = g(t,p,X(t,p),y(t,p)), (5b)
X(to,p) =fo(p), (5¢)

wheret is the independent variable apdE D, is a vector of the problem parameters.

The following assumption is made regarding the right-haded ginctions in (5).

Assumption 4.1 Lett; € D satisfyty < t; andZ; be a zero-measure subseftefts].

Suppose that the following conditions hold:

(i) f(-,p,Nx,Ny) is measurable offy,t¢] for each(p,Nx,Ny) € Dp x Dy x Dy;
(ii) f(t,-,-,-)is L-smooth orDy x Dy x Dy for eacht € [to,tf] \ Zf;
(i) there exist Lebesgue integrable functidag : [to, tf] — R U{+o} for which:
@) [Ift;p,nxny)l <m(t), Vteltote], V(p,NxNy) € Dpx DxxDy;
(0) [[f(t;P1, x> Nyy) —F(t; P2, M Ny, ) | < Ke(V)[ (P2, My Mys) — (P2, Mo Ay )l
V€ ftote],  V(P1,Mx:My1); (P2: M, My,) € Dp x Dy x Dy;

(iv) gandfg are L-smooth oD andDy, respectively.

Notions of consistent initialization, regularity, and stbns of (5) from [35] are

reproduced here for the reader’s convenience.
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Definition 4.1 The consistency set, initial consistency set, and regulaeit of (5)

are given by, respectively,

Ge == {(t,p.Nx.Ny) €D :g(t,p.Nx.Ny) =On},
Geo = {(t;p,NxNy) € Ge:t=to,Nx="fo(p)},
Gr:={(t,p,Nx,Ny) € D: mdg(t,p,Nx,Ny) is of maximal rank.
Definition 4.2 LetP C Dy, Qo C G¢ 0, andT C D¢ be a connected set containitag
A mappingz = (x,y) : T x P — Dy x Dy is called a solution of (5) ofl x P through

Qo if, for eachp € P, z(-, p) is an absolutely continuous function drwhich satisfies

(5a) for almost every € T, (5b) for everyt € T, (5c¢) att =tg, and

{(to.p,X(to,p),Y(to,p)) : p € P} = Qo.

If, in addition,
{(t,p,x(t,p),y(t,p)) : (t,p) € T x P} C Gg,
thenz is called a regular solution of (5) ahx P throughQy.
Definition 4.3 Let z be a solution of (5) ol x P throughQp. Thenz is said to
be unique if, given any other solutiari of (5) onT* x P* through Qg satisfying
TNT* # {to}, PNP*#£0, and
{(to,p,2(to,p)) : p € PNP"} = {(to,p, 2" (to,p)) : p € PNP"},
z(t,p) =z*(t,p) forall (t,p) € (TNT*) x (PNP*).
A generalization of the notion that (5) has differentialemdequal to one (see

[14, 22]) for all (t,p) € T x P is implied by regularity. The following assumption

regarding the existence of a solution is made.
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Assumption 4.2 Suppose that for som@o,Xo,Yo) € Dp x Dx x Dy, there exists a

regular solutiore of (5) on|to,t] x {po} through{(to, po,Xo,Yo) }-

Before proceeding to the main result, a proposition is pdaancerning unique-
ness and parametric dependence of solutions of (5), as wetk aquivalence to

parametric Carathéodory ODEs via an extended implicitfiom.

Proposition 4.1 Let Assumptions 4.1 and 4.2 hold. Then there exists a neighbd
N(po) C Dp of po, a setQq C G¢ o containing(to, Po, X0, Yo), and a unigque regular
solutionz of (5) ontg,ts] x N(po) throughQo. Furthermore, there exisi, p > 0 and
a function
r: Bs({(t,po,X(t,po)) : t € [to,tt]}) C Dy x Dp x Dx — R™
that is Lipschitz continuous and L-smooth on its open andheoted domain which
SatiSfyy(tap) = I’(t,p,x(t,p)) for all (tvp) € [toatf] X N(pO) and
{(t.p.X(t.p)) : (t,p) € [to,ts] x N(po)} € Bs({(t, po.X(t.Po)) : t € [to,1]}),
{(t,p,Z(t,p)) : (tap) € [toatf] X N(pO)} C BP({(tavaz(tva)) te [thtf]}) cD.
Proof Define the following compact sets:
A = {(t,po,X(t,po)) : t € [to, ]},
Q = {(t, o, X(t,Po),Y(t,po)) : t € [to, t¢]}-

ag(t,p,Nx,Ny) is of maximal rank for all(t,p,nx,ny) € Q by regularity and
9(Q2) = {0n, } by consistency. Each point in is the projection of a unique point

in Q. By Theorem 3.2, there exis{, p; > 0 and a function

r:B5l(/\)CDt><Dp><DX—>R”V
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that is Lipschitz continuous and L-smooth 83 (/) such thatrgdg(t, p,nx,Ny)
is of maximal rank for all(t,p,nx,Ny) € By, (Q) C D. Moreover, for each vector
(t,p,Nx) € Bs, (A), (t,p,Nx, T (t,p,Nx)) is the unique vector iBy, () which satisfies
the equatiomy(t,p,Nx,r (t,p,Nx)) = On,.

By proceeding as in the proof of [35, Theorem 4.34] using thigerited L-
smoothness of the implicit function in place of the Lipselsih construction, the fol-
lowing conclusions are immediately furnished: there ekif > 0 satisfyingf3 < &

and a regular solutionof (5) on(to,tf] x Bg(po) C Dt x Dp through

Qo :={(t,p,Nx,Ny) :t =to,p € Bg(Po),Nx = fo(p),Ny = (to,p,fo(p))} C Gco

such thay(t,p) = r(t,p,x(t,p)) for all p € Bg(po) and

{(t,p,x(t,p),y(t,p)) : (t,p) € [to,tr] x Bg(Po)} C By, (Q).

Moreover, the intermediate constructioim the proof of [35, Theorem 4.34] satisfies

{(t,u(t,c)): (t,€) € [to,t¢] x B (Po, fo(Po))} © Bosg, (A),

p
=u(t,(p,fo(p))), V(t.p) € [to,tr] x Bg(Po),

X(t,p)

and{(p,fo(p)) : p € Bg(Po)} C B¢ (po,fo(po)). Thus,

{(t,p,x(t,p)) : (t’p) € [tOvtf] X Bﬁ(pO)}
={(t,u(t,(p,fo(p))) : (t,p) € [to,tr] x Bg(po)},
C {(t,u(t,c)) : (t,c) € [to,tf] x Bg(Po,fo(po))}

C Bosg, (N).
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Then [35, Theorem 4.22] implies thatis the unique regular solution of (5) on
[to, tf] x Bg(po) throughQo and the result holds witN(po) := Bg(po), 6 := 0.58;,
andp := ps. O

Using lexicographic differentiation, forward sensitwftinctions for (5) are given.

Theorem 4.1 Let Assumptions 4.1 and 4.2 hold. Then, for eaehty, t], the map-
ping z = z(t,-) is L-smooth atpy; for any ke N and anyM € R"*K, the LD-

derivative mapping
Z=(X,Y) [to,te] = ROt 2] (po; M)

is such thatX and Y are absolutely continuous and Lebesgue integrablé®ty],
respectively. FurthermoreZ uniquely (in the sense of Definition 4.3) satisfies the

following DAE system:
X(t) = [fryz] (Po,X(t, Po). Y (t, Po); (M, X(1),Y (1)), a.e.te [to,tf],
Onyxk = (@] (Po. X(t, Po), ¥ (t,Po); (M, X (1), Y (1)),  Vt& [to,tf], 6
X(to) = [fo] (po; M),
on [to, t¢] through {(to,Xo,Y0)}, WhereXg := [fo] (po;M) and Yo € R*K is the
unigue solution of the equation system

Ony><k = [gto]/(pOaXanO; (M 7X07Y0))~

Proof Let d,p > 0, r, andN(pp) be given as in the statement of Proposition 4.1.

Define the sets

Ds := Bs({(t,po,X(t,Po)) : t € [to,t¢]}) C Dt x Dp x Dx,

Dp = Bp({(t. o 2(t.Po)) : t € [tortr]}) € D,
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and the following mappings:

q:Ds — Dpx DxxDy: (t,p,Nx) — (P,Nx I (t,p,Nx)),

f_: D5 - Rnx : (t)panx) = f(t7q(tapanx))

For each(p,nx) € myxDs C Dp x Dy,

f(-,p,nx) =(-,a(-,p,Nx)) : &(Ds; (P, Nx)) C Dy — R™

is measurable oftg,t;] by [39, Chap. 1, Sect. 1, Lemma 1] because the mapping

t — (p,Nxr(t,p,Nx)) is continuous omg (Dg; (P, Nx)) O [to,ts],
[to,tf] X q(D5) C [to,tf] X Dp X DX X Dy, (7)

andf satisfies the Carathéodory conditions (see, e.qg., [39foon] x Dy x Dy x Dy
by assumption.

L-smoothness o?(t, -,-) is demonstrated as follows: for eatch [to,t¢], the map-
ping (p,Nx) — (P,Nx.r(t,p,Nx)) is L-smooth onm, x(Ds;t) by L-smoothness of
on Dy (and hencey =r(t,-,-) on mpx(Ds;t)). Thus,qr = q(t,-,-) is L-smooth on

T x(Ds;t). Since
Gt (Mo x(Dg3t)) C Tpxy(Dp;t) C Dpx Dy x Dy, Vit € [to,tf] \ Z,

and the composition of L-smooth functions is L-smooth, iidias that

f(t,-,-) =f(t,q(t,-,-)) : Myx(Dg;t) C Dp x Dy — R™

is L-smooth o, x(Ds;t) for eacht € fto,tf] \ Zs.

For anyt € [to,tf] and any(p,nx) € Mx(Ds;t),

Hf(t,p,nx)” = Hf(tvpan7r(tvpan))|| S rnf(t)a
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by (7) and the Carathéodory conditions 0By Lipschitz continuity of onDg, there

existsk; > 0 such that

7 (t,P1: %) =T (t,P2, M) | < ke [[ (P2 M1xq) = (P2: M) I (8)

for any (t,p1,Nx,), (t,P2,Nx,) € Ds. It follows that

Hf(taplvnxl) _f(tap27n>(2)H = Hf(tvplvnxlvr(tvplanxl)) _f(tava"szr(tvaaer))H’
S kf(t)H(plvnxlvr(tvplanX1)) - (p27n>(27r(tvp2anx2))”a

< ke (1) (14 ke)[[(P1, M%) — (P2, M%)

for anyt < [to, t¢] and any(p1,Nx, ), (P2,Nx,) € Thx(Ds;t).

By replacingf by fandD by D, itis valid to apply Theorem 2.2 to

ut,p) =f(t,u(t,p)),

U(to,p) = fo(p),
which admits the unique solutiof(-, p) on [to,ts] for eachp € N(pg). Theorem 2.2
yields that, for eache [to,tf], Xt = X(t, -) is Lipschitz continuous on a neighborhood

N(po) C N(po) of po, with Lipschitz constarky, > 0. For anyp1,p2 € N(po),

ly(t,p1) —y(t,p2)|| = [Ir (t,p1,X(t,p1)) — r (t,p2,X(t, p2))],
< ke[| (p1,X(t,p1)) — (P2,X(t,p2)) s

<k (1+ke)llp1—p2ll,

since{(t,p,x(t,p)) : (t,p) € [to,tr] x N(po)} C D5. This demonstrates Lipschitz con-
tinuity of y; on N(po), with a Lipschitz constant that is independent.dfrom The-

orem 2.2 it also follows that; is L-smooth atpg, which implies that the mapping
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yt is L-smooth atpg for anyt € [to,tt] sinceyi(-) = ri(-,xt(-)) on N(po) andr; is
L-smooth at(po, Xt (Po))-

Define the following mappings:
F(O) : [toatf] X RPN — R : (tad) = [rt],(pOaX(t7p0);d)7
~ i—1
Fiiy : [to,te] x R — RV - (t,d) = [F_q) ) (M), [xt]So,M)(mm):d),

Vie{l,...,.k—1},

which are well-defined sinaeis L-smooth orDs D {(t,po, X(t,po)) : t € Jto,ts]}. It
will be shown by induction that, for eagke {0,1,...,k— 1}, 7 (-,d) is measurable
on [to,t¢] for eachd € R™*™ andr j (t, ) is Lipschitz continuous oR"»*"™ for each
t € [to, 7], with a Lipschitz constant that is independent.of

Consider the base case and choosedagyR" ™™, The first part proceeds as in

the proof of [10, Theorem 4.1]: by construction,
{(t,po,X(t,Po)) : t € [to,t]} C Dy,
where{(t, po,X(t,po)) : t € [to,tf]} is compact and; is open. Thus,
{(t,po,X(t,po)) : t € [to,t¢]} N (RM"*™\ Ds) = 0.
Letd := (0,d). There existg > 0 such that for any € [to,t;] and anyr € [0, €],
(t,Po,X(t, o)) + 7d = (t, (Po,X(t, po)) + 7d) € Dy;

this follows from [39, Chap. 2, Sect. 5, Lemma 1]. Sitiee (po,X(t,po)) is contin-
uous on[tg,t¢], the composite mappirtg— r (t, (po,X(t, po)) + 7d) is continuous on
[to, 7] for eacht € [0, €]. The mapping

t — lim r(t7 (pOaX(tva)) + ad) - I’(t,po,x(t,po))
al0 a
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is the pointwise limit of a sequence of continuous functiand is therefore measur-
able onfto,t¢], from which it follows thatr o) (-,d) is measurable ofto, t¢] for each
d e RMWHx,

Choose any € [to,t¢]. The functiorr is Lipschitz continuous om, x(Ds;t) and
directionally differentiable afpo, x(t,po))- By (8), k- acts as a Lipschitz constant for

rt in a neighborhood ofpo, x(t,po)), and as a result

[T (0) (t, d1) = Tg)(t,d2)[| = [[[re]' (Po. X(t, Po); d1) — [r]' (Po, X(t, Po); d2)]],

Skl'Hdl_d2||7 vt € [t07tf]7 levdZGRnp+nX7

by [9, Theorem 3.1.2]. Hence g (t,-) is Lipschitz continuous ofR"*"™ for each
t € [to, 7], with Lipschitz constarik; .

Assume that the claim is true for= j € {0,1,...,k— 2} and choose any vector
d € R ™™, From [10, Corollary 4.2} — [xt][()i;,\l,,)(mm) is an absolutely continuous

mapping orto, ts] for eachi € {1,...,k}. Hence, the mapping

Meiag
t— . i +1d
oo (M 41)
is absolutely continuous, and therefore measurablétoamn| for any T > 0. By the
inductive assumptiofi;) (-, ) is a measurable mapping g, t¢] for anyn € R

and there existt;;(j) > 0 such that
HF(j)(t,dl) —F(j)(t,d2)|| < kF(J) ldp—dz|, Wte [to,tf], Vd,,dy € R,
Hence,

7y (E )l = 1175 (&, d) =y (8, Onpn) | < ey [ldlll, V(E,d) € [to, te] < R,
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Consequently, the mapping

F iyt (M), [Xt];(fo).m (M(j11))) +1d) =Tt M 1), [Xt]é{f.m (M(j11))
T

t—

is Lebesgue integrable, and therefore measurablétpdn] for any T > 0 by [39,
Chap. 1, Sect. 1, Lemma 1]. Then, since the mapﬁmg is directionally differen-

tiable at(m;, 1), [xt]é?,M (M(j;+1))), the mapping

o lim )t (M), [Xt];(fo).m (M(j11))) +ad) =Tt M), [Xt]f){f,m (M(j+1))
al0 a

is well-defined and is measurable figt;] as the pointwise limit of a sequence of
measurable functions. Henag;, 1(-,d) is measurable ofty, ts] for eachd € R,

Again by [9, Theorem 3.1.2], the finite constdxp(tj) acts as a Lipschitz constant

for 7110 = [F () (Mg XSy (M1)); ) ORI
TG+t d1) =T () (t,d2) || < ke ldr—d2l|,  VE€[to,ts], Vdy,dz € R

implying thatr ;. 1(t,-) is Lipschitz continuous oR"°*™ for eacht < [to, tt], with
a Lipschitz constant that is independent.ofhe claim is therefore proved by induc-
tion.

Define the following mappings:

Ry ¢ fto,te] — R™ :tem xi] i (my), Vi€ {1,....k},

Y fto,ts] — RY it ’_’?(ifl)(tvm(i)v[Xt]gc;r\l/s(m(i)))v Vie{l,... Kk}
Choose any:= j € {1,...,k}. For eactd € R"*"™, the mapping;_y(-,d) is mea-

surable ortp,t;]. Moreover, there exisllsr(j_m > 0 such that

IT(-1)(t,da) =Ty (t,d2) | < ke, [d1—dafl, VEeEto,ts], Vdy,dp € R,
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and

TG0 ®A) | = [[F (1) (t,d) =T (j_1)(t, Onpin) ]l

S k?“_l) ||d||7 v(t7d) 6 [tO’tf] X Rnp+nx'

(i-1)

It was demonstrated earlier that the mappiag : t — [X],, m

(m(j)) is absolutely
continuous orto, tf]. i(j) is therefore measurable dty,t¢], from which it follows
thaty ;) is Lebesgue integrable dta, t¢] by [39, Chap. 1, Sect. 1, Lemma 1].

Define the following matrix-valued functions:

X [to,tr] = R™H 1t Xy (t)

Y :fto,te] = RY Kt [§g) (1)

For anyk € N and anyM € R™*K Theorem 2.2 implies that the LD-derivative map-

pingt — [x:)'(Po; M) is the unique solution ofto,t¢] of the following ODE system:

U(t) = [ft\Zf],(p07X(t’ pO)x (M ) U(t)))a
9)

U(to) = [fo] (po;M).

By L-smoothness of; andr; at (po,X(t,po)) for eacht € [to,t¢], the LD-derivative

chain rule (1) yields

[z © i)' (P, X(t, Po); (M, A))
= [foz] (At (Po, X(t, Po)); [at]' (Po, X(t, Po); (M, A))),

= [ft\Zf],(p07X(t’ pO)vr(tv po,X(t, pO)); (M A, [rt],(poyx(t’ pO); (M vA))))v
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for any(t,A) € [to,t;] x R™*K. Since (9) admits the unique solutignon [to, ],

Po M

X0 =TIzl | | xtpo) |: () . (0)

r(t,p07X(t,p0)) [rt]/(p07x(t’p0);(M’Xv(t)))

for almost every € [to,t¢] and

X(to) = [fo]' (Po;M). (11)

For eacht € [to,tf] and each € {1,...,k},

Yoy (1) =T(i—g)(t, Mgy, [xt]S;ﬁA)(m(i))%
D (-1
= [1t]po.x(tpo)). (M by o)) (M0 Xt (M) )

from which it follows that

Y (t) =[] (Po,X(t, Po); (M, [x]'(Po; M)),

= 1) (Po, X(t, P0); (M, X (1)), ¥t € [to, ts]. (12)
(4) and the definition of the LD-derivative imply that, forake € [to, tf],
N :=r’(t, Po,X(t, Po); 01k, M, [x)' (P03 M))) = [r1]' (Po, X(t, Po); (M, X (1))
is the unique solution of

Onyxk = g/(t7 pOaX(t7 po)ay(t7 po): (leka M 5 [XI]/(pO; M )a N))a

= [g[],(po,X(t, p0)7y(t’ pO); (M 7X(t)’ N))

Hence,

ony><k = [gf]/(pOaX(tva)ay(tva); (M ,X(t),?(t))), vt e [t07tf]' (13)
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For eacht € [to,tf], the L-smoothness of; was established earlier; the LD-

derivative chain rule yields

vt)' (Po;M) = [re]/ (Po. X(t,Po); (M, [x]' (Po;M))) = Y (t), Wt € [to,ts].

Evaluation of (13) at =ty yields the fact tha¥ (to) is the unique solutiol¥ o € R™*k

of the equation system

On,xk = [Gt]' (Po, X0, Yo; (M. [fo]'(Po; M), Y o)),

sincex(to, po) = Xo, Y(to,Po) = Yo, andX (to) = [fo]’ (Po;M). The conclusion of the
theorem holds by virtue of (10)-(13) and the observatiohyftapg) =r (t, po, X(t, po)),

X(t) = [%)'(po,M), andY (t) = [yz]' (Po,M) hold for allt € [to, t¢]. 0

Remark 4.1If f, g, andfg areC! on their respective domains, th@&h= 0 and, as

expected, (6) simplifies to

of of of
X(t) = d_pM &X(t) 0—yY(t),
_dg ag ag
Onckc= M+ 5 X0+ 3V 0),

X(to) = Jfo(po)M,

where the partial derivatives 6ndg are evaluated dt, po, X(t, po), y(t, Po)), which

has been omitted for brevity.

Remark 4.2Given a regular solutionof (5) onlto,t¢] x {po} through{(to, po, Xo0,Yo0)}
and any nonsinguldvl € R™*" (X(tf),Y (tf)) := [z,] (po;M) can be obtained by

evaluating the unique solution of the auxiliary nonsmoo#&E>ystem (6) at = t;.
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As an element of the lexicographic subdifferential,

JLXt; (Po; M)
=312 (po;M)

JLYt; (PosM)

is a computationally relevant object related to the paramsensitivities of the differ-
ential variablex and algebraic variablas respectively, at = t;. It can be furnished

by solving the following linear equation system:

X(tr) JLxt; (Po; M)
= M.

Y (tf) JLYt; (PosM)
Remark 4.3Mirroring the discussion in Remark 2.1, the right-hand didiection
(t,A) — [f_t\zf]’(po,x(t,po); (M,A)) in (9) need not satisfy the Carathéodory condi-
tions, but thek columns of the matrix-valued functidn— [x;)'(po; M) are nonethe-
less absolutely continuous dig,t¢]. However, thek columns of the matrix-valued
functiont — [y:]'(po;M) are Lebesgue integrable vector-valued functions mapping

[to,t] to R, and therefore may exhibit discontinuities with respedh®indepen-

dent variable (as illustrated in Example 5.2).

5 Examples

In this section, examples are provided to highlight the theo

Example 5.1Consider the following nonsmooth parametric DAES:
X(t, p) = 0.5sign1—t)max{0, p}y(t, p),
0= [x(t, p)| +y(t, p)| — 1, (14)

X(0,p) = arctar{p),
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where sigif-) denotes the signum function. Lpg := 0,N(po) :=] —0.5,0.5[, %5 := 0,

andyp := 1. There exists a unique solutiarie (x,y) of (14) on[0, 2] x N(po) through

Qo :={(t,p,nNx,Ny) :t=0,p e N(po),Nx = arctar{p),ny = 1—|arctarip)|}

which is given by

(arctar{p) — 1)exp(—0.5pt) + 1
, if (t,p) €0,1[x]0,0.5],

(1—arctarip)) exp(—0.5pt)

(B(p)—1)exp05p(t—1)) +1|
zitee . if (t,p) € [1,2]x]0,0.5],
(1—B(p))exp(0.5p(t — 1))

t
arctarip) | if (t,p) €[0,2]x]—0.5,0],

1+ arctarip)

wheref :]0,0.5[—]0,1[: p— (arctar{p) — 1) exp(—0.5p) + 1. The solution is regular
asmadg(t, p,x(t, p),y(t, p)) = {1} for all (t, p) € [0,2] x N(po), sincey(t, p) > 0 for
all (t,p) € [0,2] x N(po). Note thatz(t,0) = (x(t,0),y(t,0)) = (0,1) forall t € [0,2].

For anyd := (di,dp,d3) € R®, [fo]'(0;d) = d,

0.5max0,d;}, ifte][0,1],

[fo,(13]'(0,2(t,0);d) = { o, if t=1,

—0.5maxX0,d;}, ifte]l, 2,

[gt]/(O,Z(t,O); d) = |d2| +ds.

By Theorem 4.1z = z(t, ) is L-smooth apg for eacht € [to,t¢]; foranyme R,

the LD-derivative mapping = (X,Y) : t — [z]/(0;m) is the unique solution (in the
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sense of Theorem 4.1) of the following DAE system:

X(t) = 0.5sigr(1 —t) max{0,m},
0= [X(t)|+Y(t), (15)
X(0) =m,
on [0, 2] through{(0,m,—|m|)}. Observe that the initial conditio¥i(0) in (15) is

uniquely determined fro{(0) (unlike in (14)), in accordance with Theorem 4.1. For

anym+ 0, post-multiplying the unique solutigiX(t), Y (t)) of (15) bym~! yields:

{(05t+1,-0.5t—1)}, ifte[0,1,m>0,

Jz(0;m) = § ((—0.5t+2,05t—2)}, ifte[L,2],m>0,

{(1,1)}, if t € [0,2),m< 0,

so that

{(0.5t+1,-0.5t—1),(1,1)}, ifte[0,1],
d.z(0) =

{(~05t+2,05t—2),(1,1)}, ifte[L2]

From the analytic solution, for eatke [0, 1],

((1+ p?) 1 —o0.5t(arctarip) — 1)) exp(—0.5pt)
, ifp>0,
(—(1+ p?) 1 —0.5t(1 - arctarip))) exp(—0.5pt)
JZt(p) = -
(1+p?)~
, if p<O,
(1+p°)~t
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and, for each € [1,2],

(B'(p) +0.5(t — 1)(B(p) — 1)) exp(0.5p(t — 1)) _
, ifp>0,
(=B'(p)+0.5(t—1)(1—B(p))) exp0.5p(t — 1))
Jzi(p) =< ¢
(1+p)t
) if p<O.
(4P

Observe that, for eadhe [0, 2],

{(1405t,—1—05t),(L 1)}, iftel01]
0.z(0) C dsz:(0) =

{(15—05(t—1),-15+05(t—1)),(1,1)}, ifte[1,2],

which is as expected sinagis PC! onN(pp) for eacht < [0,2].

Example 5.2Sensitivities of solutions of (5) with respect to initialtdeare easily
computed by Theorem 4.1. Suppose th& a unique regular solution of (5) (with
no explicit parametric dependence in the right-hand sidetfans) onto,t] x {co}
through{(to,co,Yo)} for some(co,yo) € Dx x Dy. Then, with analogous conditions

to the hypotheses of Theorem 4.1, the nonsmooth DAE systesiniplifies to

X(t) = [foz) (X(t,Co), Y(t, Go); (X (1), Y (1)),
Ony xk = [)' (X(t,C0), Y(t, Co); (X (1), Y (1)), (16)

X(tg) =M.
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As an illustration, consider the following IVP in DAES:
Xl(t7c) =1- y(ta C)v

X2(t,C) = Xo(t,C),

0= max{xy(t,c),xa(t,c)} + |y(t,c)| — 1, 17)
xl(O, C) =C1,
x2(0,¢) = Cp.

Letco := (0,0), yo := 1, and[to, t¢] := [0, 1]. Consider the parameter set
C:={(c1,00) e R?:0<¢1 < 6, < 0.3} U{co}.
The unique solutioz = (X,y) of (17) on[0, 1] x C through

QO = {(tarlxlarlX27ny) it= 07 (nX17nX2) € Cv ’7y = 1_ max{nX17nX2}}

is given by
€1+ Co(1 —exp(—t))
coexp(—t) ; if t € [0,7(c)],
1—crexp(—t)
z:(t,c)— < ¢ - -
(c1+c(1—exp(—1(c)))) explt — 1(c))
coexp(—t) , ifte]r(c),1],
1—(c1+c(l—exp(—T1(c))))expt —1(C))
where

In (Clzjzcz) , if (c1,62) € C\ {co},

7:C— [0,0.7[: (c1,C2) —
0, if (c1,C2) = Co.
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The solution mapping is regular becausgt,c) > 0 for all (t,c) € [0,1] x C implies
that sdg(t, x(t,c),y(t,c)) = {1} for all (t,c) € [0,1] x C. In fact, there is a unique
regular solution of (17) o0, 1] x [—0.3,0.3]2 through a superset d®, which can
be calculated by inspection andR€! on its domain. However, its complete analytic
expression is omitted here to make this example less cuminers

The right-hand side functiorfsandg in (17) areC' andPC! onR3, respectively.
Note thatz(t,02) = (x(t,02),y(t,02)) = (0,0,1) for all't € [0,1]. Let

apl a1z

A= e R3*2,

a1 az2

az1 azz

For anyt € [0,1] and anyd := (dy,d,d3) € RS,

(615705 (@) =lim o~ }(max{ach, adp} + |1+ ads] 1),
= max{dl, dz} + dg7
[gt]gt),oz),A(d) =lim a~Y(max{a;1 + adi, a1+ ada} — max{ag, a1} + ads),

al0
di+ds, if aj; > ap;0orag; = apx andd; > dp,

do+dz, if a;q < apyorag; =ap;andd; < do.

Therefore, for any € [0,1],

[ft],(z(t,oz),/-\) = th (Z(tvOZ))A _ —ag] —as2 |

—ap1 —ap2

ag1+agg ajpt+agy| I 11> @101 a1 = az1,812 > az,

(9] (2(t,02);A) =

Q1+ Az App+agy| 0 If @11 < @107 a1 = 81,812 < az.
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Choose any directions matri € R2*2 with entries satisfying
O<nMpr<m<Mp<mM<0.3

(which guarantees its nonsingularity). With these rigath side functions, (16) ad-

mits the unique solutiod = (X,Y) : t — [z]'(co;M) on[0,1] through

{(Ova[_m21 _m22])}

given by

M1+ Mp1(1 — exp(—t)) Mo+ Mpo(1 —exp(—t))

Z:it— My exp(—t) Mmpoexp(—t) ,

—Mmprexp(—t) —mpexp(—t)

if t € [0,7(my))], and
B(mey)explt —1(mey)))  y(m(g), M) explt — 1(m)))
Z:it— mprexp(—t) Mpoexp(—t) :
—B(myy) explt — 1(M(1))) —y(M(),M(z)) eXpt — T(M(y)))
if t €]7(m(q)),1], where
B M) — Mig+ Mpy(1—exp(—1(My)))),
y: (M), Mz)) — M2+ Mpp(1—exp(—1(m(y)))).

The mapping& andY; are absolutely continuous ¢, 1] butY, is not continuous at
T(my)) €]0,1]. Post-multiplyingZ (t; ) by M~ furnishes the following L-derivative:
expl—1(my)) (1—exp(—1(m(y))))exp(l—T1(m()))
Iz, (02; M) = 0 exg—1)

—expl-1(m(y)) —(1—exp—1(m(y))))exp(l—T(M(y)))
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From the analytic solution with & ¢; < ¢; < 0.3,

exp1-1(c)) (1—exp(—1(c)))expl—1(c))
Jz; (c) = 0 exp(—1)
—exp(1-1(c)) —(1—exp(—1(c)))exp(1—1(c))
Letcj, := (mua/j,mpa/j) for eachj € N. Thent(c(j)) = T(m;y) for eachj € N and

limj e Iz (C(j)) = Lzt (02;M) € 9Lz, (02) C gz, (02), @s expected.

6 Conclusions

A theory to compute lexicographic derivatives of solutiofi®onsmooth parametric
DAEs has been developed. These generalized derivativesoarputationally rele-
vant and furnished via the solution of an auxiliary nonsrhddE system. The part
of this solution mapping that is associated with the algebrariables exhibits fea-
tures that are unlike the original nonsmooth parametric BAEinterest. Namely, it
need not be continuous with respect to the independentolargad its initial condi-
tion is uniquely determined from the algebraic constrapfitte auxiliary nonsmooth
DAE system.

Forward sensitivity functions for Carathéodory indexelrs-explicit DAEs have
thus been characterized. Index refers here to a generaliffecential index, which
is formulated in terms of the projections of Clarke Jacobiaging of maximal rank.
Existence and regularity of a solution of the nonsmooth patec DAESs need only
be assumed on a finite horizon and at one parameter valuesftingbry to be appli-
cable. This work is a natural extension of the classicalifeitgresults for the analo-

gous smooth case. Numerical solution of large-scale instaof the DAE system (6)
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will require automatic methods for evaluation of the LD-datives appearing in (6),
which is facilitated by a recently developed vector forwaralde of automatic differ-
entiation for LD-derivative evaluation [7]. Moreover, agdoping tractable methods
for simulating the auxiliary nonsmooth DAE systems fountketie an avenue for fu-
ture work. Other possible directions for future work inauektending the results to

“high-index” nonsmooth DAEs and adjoint sensitivity resubr nonsmooth DAEs.
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