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Abstract Nonsmooth equation-solving and optimization algorithms which require

local sensitivity information are extended to systems withnonsmooth parametric

differential-algebraic equations embedded. Nonsmooth differential-algebraic equa-

tions refers here to semi-explicit differential-algebraic equations with algebraic equa-

tions satisfying local Lipschitz continuity and differential right-hand side functions

satisfying Carathéodory-like conditions. Using lexicographic differentiation, an aux-

iliary nonsmooth differential-algebraic equation systemis obtained whose unique so-

lution furnishes the desired parametric sensitivities. More specifically, lexicographic
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derivatives of solutions of nonsmooth parametric differential-algebraic equations are

obtained. Lexicographic derivatives have been shown to be elements of the plenary

hull of the (Clarke) generalized Jacobian and thus computationally relevant in the

aforementioned algorithms. To accomplish this goal, the lexicographic smoothness

of an extended implicit function is proved. Moreover, thesegeneralized derivative

elements can be calculated in tractable ways thanks to recent advancements in nons-

mooth analysis. Forward sensitivity functions for nonsmooth parametric differential-

algebraic equations are therefore characterized, extending the classical sensitivity re-

sults for smooth parametric differential-algebraic equations.

Keywords Generalized Jacobians· Sensitivity analysis· Nonsmooth analysis·

Optimization· Parametric uncertainty

Mathematics Subject Classification (2000)49J52· 34A09· 90C31

1 Introduction

Algorithms for nonsmooth equation-solving (e.g., semismooth Newton methods [1,

2] and LP-Newton methods [3]) and nonsmooth optimization (e.g., bundle methods

for local optimization [4–6]) require sensitivity information for which many current

theoretical and computational approaches are lacking. Recent progress has been made

in tractable algorithms [7] for obtaining elements of a class of generalized derivative,

using lexicographic differentiation [8] to calculate lexicographic directional deriva-

tives, as introduced in [7]. Applicable to lexicographically smooth functions (which

includes all differentiable functions, convex functions,andPC1 functions in the sense



Generalized Derivatives of Differential-Algebraic Equations 3

of Scholtes [9]), this approach has been used to furnish computationally relevant gen-

eralized derivatives for parametric ordinary-differential equations (ODEs) with nons-

mooth right-hand sides [10]; hybrid systems, inverse functions, and implicit functions

[11]; ODEs with linear programs embedded [12]; and nonsmooth optimal control

problems with nonsmooth ODEs embedded [13].

With applications in mechanical, electrical, and chemicalengineering, differential-

algebraic equations (DAEs, also called singular or descriptor systems) have become

a widely applied modeling tool [14]. Narrowing the focus more, nonsmooth DAEs

provide a natural modeling framework for a number of physical phenomena found in

engineering and applied mathematics such as campaign continuous pharmaceutical

manufacturing (see, e.g., [15–17]). In this paper, generalized derivative notions from

nonsmooth analysis are used (for background, the reader is referred to [9, 18–20] and

the references therein). Elements of the plenary hull of Clarke’s generalized Jacobian

comprise the desired sensitivity information for the nonsmooth algorithms described

earlier. As DAEs pose a number of theoretical and numerical difficulties over ODEs

(see, e.g., [14, 21–24] and the references therein), the extension of the aforementioned

lexicographic differentiation theory to nonsmooth DAEs requires careful considera-

tion.

Numerous studies have been completed on forward and adjointsensitivities of

smooth DAEs (see, e.g., [25, 26] and the references therein), hybrid and discontinu-

ous systems (see, e.g., [27–29]), and oscillating systems [30, 31]. However, the theo-

retical tools and findings in these works are not applicable here due to incompatible

assumptions. Clarke first derived a result on generalized Jacobians of solutions of
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nonsmooth parametric ODEs [18, Theorem 7.4.1]. Pang and Stewart [32, Theorem

11, Corollary 12] proved that such generalized Jacobian supersets are linear Newton

approximations (LNAs, see [19] for details) when the ODE right-hand side functions

are semismooth in the sense of Qi [2]. Pang and Stewart [32] then applied their ODE

sensitivity results to differential variational inequalities (DVIs), as introduced in [33],

with differentiable ODE right-hand side functions and differentiable variational con-

dition functions; the authors calculated directional derivatives of local solutions of

DVIs and obtained LNAs of the solution map about an initial data point. As DVIs

can be expressed as a class of DAEs with specialized structure, the results in [32] are

restricted to a subclass of nonsmooth DAEs with differentiable ODE right-hand side

functions and nonsmooth algebraic equations. Furthermore, LNAs have been shown

to not necessarily satisfy desirable properties which are satisfied by generalized Ja-

cobians, such as LNAs of differentiable functions containing elements other than the

Jacobian evaluated at said point (see [10, Example 4.2] and [12, Example 1.1]) and

LNAs of convex scalar-valued functions including elementsthat are not subgradients

[10].

Khan and Barton [10] derived a method for obtaining lexicographic derivatives

of the unique solution of parametric Carathéodory ODEs from the unique solution of

an auxiliary ODE system obtained via the lexicographic directional derivative chain

rule [7]. The findings in [10] are a natural extension of the classical sensitivity results

for smooth parametric ODE systems obtained via the classical chain rule (see, e.g.,

[34, Chap. V]). As a subset of the plenary Jacobian, elementsof the lexicographic

subdifferential have been shown to be computationally relevant in many applications
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[10], including the nonsmooth algorithms detailed earlier. Moreover, as a key prop-

erty of the lexicographic directional derivative is that itsatisfies strict calculus rules,

the implementation of a vector forward mode of automatic differentiation to calculate

elements of the plenary Jacobian is therefore possible [7].

The main contribution of the current article is the development of a suitable theory

for obtaining generalized derivative elements of solutions of nonsmooth parametric

DAEs. In the spirit of [10], lexicographic derivatives (andtherefore elements of the

plenary Jacobian) of unique solutions of Carathéodory index-1 semi-explicit DAEs

are obtained from the unique solution of an auxiliary nonsmooth DAE system via

the lexicographic directional derivative chain rule. First, we derive the lexicographic

smoothness of the extended implicit function constructed in [35] inherited from lex-

icographic smoothness of the participating functions. In doing so, it is possible to

formulate the nonsmooth DAEs as equivalent parametric Carathéodory ODEs on an

open and connected set containing the unique solution. The sensitivity theory devel-

oped here applies to DAEs for which existing methods fail and, thanks to the strict

calculus rules of the lexicographic directional derivative, lays the theoretical ground-

work upon which efficient numerical implementations can be designed. Methods for

nonsmooth equation-solving and nonsmooth optimization are thus extended to sys-

tems with nonsmooth parametric DAEs embedded.

The rest of this article is organized as follows. Necessary background in nons-

mooth analysis is presented in Section 2. Lexicographic smoothness of extended im-

plicit functions is proved in Section 3. Generalized derivatives of nonsmooth DAEs
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are calculated in Section 4. Examples are given in Section 5 and concluding remarks

are provided in Section 6.

2 Preliminaries

The notational conventions here largely echo those set out in [7, 10]. The set of pos-

itive integers is denoted byN and the set of nonnegative real numbers is denoted by

R+. The vector spaceRn is equipped with the Euclidean norm‖ · ‖ and the vector

spaceRm×n is equipped with the corresponding induced norm. Sets are denoted by

uppercase letters (e.g.,H), matrices inRm×n and matrix-valued functions are denoted

by uppercase boldface letters (e.g.,H), elements ofR and scalar-valued functions are

denoted by lowercase letters (e.g.,h), and vectors inRn and vector-valued functions

are denoted by lowercase boldface letters (e.g.,h). The zero vector inRn is denoted

by 0n, the m× n zero matrix is denoted by0m×n, and then× n identity matrix is

denoted byIn. A well-defined vertical block matrix (or vector):



H1

H2




can be written as(H1,H2). Theith component of a vectorh is denoted byhi. Paren-

thetical subscripts may be used to indicate the column vector of a matrix (e.g., the

matrix H has thekth columnh(k)), or to indicate a sequence of vectors or vector-

valued functions. Parenthetical superscripts (e.g.,h(k)) are used for lexicographic dif-

ferentiation.

The open and closed balls of radius r> 0 centered ath ∈ R
n are denoted by

Br(h) andB̄r(h), respectively. Aneighborhood ofh ∈ R
n is a set of pointsBδ (h) for



Generalized Derivatives of Differential-Algebraic Equations 7

someδ > 0. A neighborhood of H⊂ R
n is given byBδ (H) := ∪h∈HBδ (h) for some

δ > 0. Given a setH ⊂ R
n, its convex hull is denoted by convH. A set of matrices

H ⊂ R
n×n is said to be ofmaximal rankif it contains no singular matrices. Given

nx,ny,nz ∈ N andW ⊂ R
nx ×R

ny ×R
nz, theprojections of W ontoRnx andR

nx ×R
ny

are given by, respectively,

πxW := {ηηηx ∈ R
nx : ∃(ηηηx,ηηηy,ηηηz) ∈ W} ⊂ R

nx,

πx,yW := {(ηηηx,ηηηy) ∈ R
nx ×R

ny : ∃(ηηηx,ηηηy,ηηηz) ∈ W} ⊂ R
nx ×R

ny.

Theshadows of W aty ∈ πyW with respect toRnx andR
nx × R

nz are given by, re-

spectively,

πx(W;y) := πx{(ηηηx,ηηηy,ηηηz) ∈ W : ηηηy = y} ⊂ R
nx,

πx,z(W;y) := πx,z{(ηηηx,ηηηy,ηηηz) ∈ W : ηηηy = y} ⊂ R
nx ×R

nz.

Theshadow of W at(x,y) ∈ πx,yW with respect toRnz is given by

πz(W;(x,y)) := πz{(ηηηx,ηηηy,ηηηz) ∈ W : (ηηηx,ηηηy) = (x,y)} ⊂ R
nz.

Given nq ∈ N, Wx ⊂ πxW, (x,y,z) ∈ W, andf : W → R
nq, thecross-section off at

x ∈ πxW is given by

fx : πy,z(W;x) → R
nq : (ηηηy,ηηηz) 7→ f(x,ηηηy,ηηηz).

TheWx-blind cross-section off at x is given by

fx\Wx : πy,z(W;x) → R
nq : (ηηηy,ηηηz) 7→





f(x,ηηηy,ηηηz), x ∈ πxW \Wx,

0nq, x ∈ Wx.

The other non-vacuous projections, shadows, cross-sections and blind cross-sections

are defined similarly.
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2.1 Generalized Derivatives

Let X ⊂ R
n be an open set andf : X → R

m. Given thatf is (Fréchet) differentiable

at x ∈ X, its (Fréchet) derivative is called theJacobian matrixand is denoted by

Jf(x) ∈ R
m×n. The functionf is said to bedifferentiable on Xif f is differentiable

at each pointx ∈ X. The functionf is said to becontinuously differentiable (C1) at

x ∈ X if f is differentiable on a neighborhoodN(x) ⊂ X of x andJf : N(x) → R
m×n is

continuous onN(x). The functionf is said to beC1 on X if f isC1 at each pointx ∈ X.

As defined by Scholtes [9],f is said to bepiecewise differentiable (PC1) at x ∈ X if

there exist a neighborhoodN(x) ⊂ X of x and a finite collection ofC1 functions on

N(x), {f(1), . . . , f(k)}, such thatf is continuous onN(x) and

f(ηηη) ∈ {f(i)(ηηη) : i ∈ {1, . . . ,k}}, ∀ηηη ∈ N(x).

f is said to bePC1 on X if f is PC1 at each pointx ∈ X.

Let f be locally Lipschitz continuous onX. It follows that f is differentiable at

each pointx ∈ X \Zf , whereZf ⊂ X has zero (Lebesgue) measure, by Rademacher’s

Theorem. Clarke [18] established the following definitionsand results concerning

generalized derivatives. TheB-subdifferentialof f at x ∈ X is defined as

∂Bf(x) :=

{
lim
i→∞

Jf(x(i)) : lim
i→∞

x(i) = x, x(i) ∈ X \Zf,∀i ∈ N

}
.

The Clarke (generalized)Jacobianof f at x ∈ X is defined as

∂ f(x) := conv∂Bf(x).
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For a pointx ∈ X, ∂Bf(x) is necessarily nonempty and compact, while∂ f(x) is nec-

essarily nonempty, compact, and convex. Iff is differentiable atx thenJf(x) ∈ ∂ f(x).

If f is C1 at x then∂ f(x) = ∂Bf(x) = {Jf(x)}.

Theplenary Jacobianof f at x ∈ X [36] is defined as

∂Pf(x) := {M ∈ R
m×n : ∀d ∈ R

n,∃H ∈ ∂ f(x) s.t.Md = Hd}.

As the name suggests, the plenary Jacobian off at x is the plenary hull of its Clarke

Jacobian atx (see [36] for details on plenary sets and plenary hulls); it is the inter-

section of all plenary supersets of∂ f(x), which includes all linear transformations

for which images are indistinguishable. As demonstrated byImbert [37], ∂Pf(x) is

nonempty, compact, convex, and satisfies

∂ f(x) ⊂ ∂Pf(x) ⊂
m

∏
i=1

∂ fi(x).

As pointed out in [10], if min{m,n} = 1 then∂ f(x) = ∂Pf(x). Moreover, ifm = n

and if ∂ f(x) is of maximal rank then a similar relationship holds betweenimages of

inverses of elements of∂ f(x) and∂Pf(x):

{H−1d ∈ R
n : H ∈ ∂Pf(x)} = {H−1d ∈ R

n : H ∈ ∂ f(x)}, ∀d ∈ R
n.

As a consequence of these observations, elements of the plenary Jacobian are no less

useful than elements of the Clarke Jacobian in any of the following: bundle meth-

ods for finding local minima for nonsmooth nonlinear programs (since the objective

function is scalar-valued), semismooth Newton methods, Clarke’s mean value the-

orem [18, Proposition 2.6.5], and Clarke’s inverse function theorem [18, Theorem

7.1.1].
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Givennx,ny,nz,nq ∈ N, W ⊂ R
nx × R

ny × R
nz open, andg : W → R

nq Lipschitz

continuous on a neighborhood of(x,y,z) ∈ W, the Clarke (generalized)Jacobian

projectionsof g at (x,y,z) are defined as

π1∂g(x,y,z) :=
{

M ∈ R
nq×nx : ∃[M N1 N2] ∈ ∂g(x,y,z)

}
,

π2∂g(x,y,z) :=
{

M ∈ R
nq×ny : ∃[N1 M N2] ∈ ∂g(x,y,z)

}
,

π2,3∂g(x,y,z) :=
{
[M1 M2] ∈ R

nq×(ny+nz) : ∃[N M1 M2] ∈ ∂g(x,y,z)
}

,

with π3∂g(x,y,z), π1,2∂g(x,y,z), andπ1,3∂g(x,y,z) defined similarly. Ifg is C1 at

(x,y,z) then

π2,3∂g(x,y,z) =

{[
∂g
∂y

(x,y,z)
∂g
∂z

(x,y,z)
]}

.

2.2 Lexicographic Differentiation

Nesterov [8] introduced lexicographically smooth functions and the lexicographic

(generalized) derivative. GivenX ⊂ R
n open andf : X → R

m, thedirectional deriva-

tive of f at x ∈ X in the directiond ∈ R
n is given by

f′(x;d) := lim
α↓0

f(x+ αd)− f(x)

α
,

if it exists. The functionf is said to bedirectionally differentiable atx if f′(x;d) exists

and is finite for alld ∈ R
n. Given thatf is locally Lipschitz continuous onX, f is

said to belexicographically smooth (L-smooth) atx ∈ X if for any k ∈ N and any

M := [m(1) · · · m(k)] ∈ R
n×k, the following higher-order directional derivatives are
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well-defined:

f(0)
x,M : R

n → R
m : d 7→ f′(x;d),

f(1)
x,M : R

n → R
m : d 7→ [f(0)

x,M ]′(m(1);d),

f(2)
x,M : R

n → R
m : d 7→ [f(1)

x,M ]′(m(2);d),

...

f(k)x,M : R
n → R

m : d 7→ [f(k−1)
x,M ]′(m(k);d).

The functionf is said to belexicographically smooth (L-smooth) on Xif it is L-smooth

at each pointx ∈ X. The class of L-smooth functions is closed under composition, and

includes allC1 functions, convex functions [8], andPC1 functions [7] in the sense of

Scholtes [9]. Given any nonsingular matrixM ∈ R
n×n andf : X → R

m L-smooth at

x ∈ X, the mappingf(n)
x,M : R

n → R
m is linear and thelexicographic (L-)derivativeof

f at x in the directionsM is

JLf(x;M) := Jf(n)
x,M (0n) ∈ R

m×n.

The lexicographic subdifferentialof f at x is defined as

∂Lf(x) := {JLf(x;N) : N ∈ R
n×n,detN 6= 0}.

If f is differentiable atx then∂L f(x) = {Jf(x)} and if m= 1 then∂L f (x) ⊂ ∂ f (x).

The lexicographic directional derivative was introduced by Khan and Barton [7]:

given anyk∈ N, anyM := [m(1) · · · m(k)] ∈ R
n×k, andf : X → R

m L-smooth atx ∈ X,

the lexicographic directional (LD-)derivativeof f at x in the directionsM is defined

as

f′(x;M) :=
[
f(0)
x,M (m(1)) f(1)

x,M (m(2)) · · · f(k−1)
x,M (m(k))

]
.
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Note thatf′(x;M) is uniquely defined for allM ∈ R
n×k and all k ∈ N. The LD-

derivative adopts its name because ifM is square and nonsingular then it follows

that f′(x;M) = JLf(x;M)M . If f is differentiable atx thenf′(x;M) = Jf(x)M . If M

has one column, the LD-derivative is equivalent to the directional derivative. Unlike

the generalized Jacobian, the LD-derivative obeys a strictchain rule [7].

Theorem 2.1 Let X⊂ R
n, Y ⊂ R

m be open andh : X → Y andg : Y → R
q be locally

Lipschitz functions on X and Y, respectively. Leth andg be L-smooth atx ∈ X and

h(x) ∈ Y, respectively. Then the compositiong◦ h is L-smooth atx; for any k∈ N

and anyM ∈ R
n×k, the chain rule for LD-derivatives is given as:

[g◦h]′(x;M) = g′(h(x);h′(x;M)). (1)

Theorem 2.1 reduces to Nesterov’s chain rule [8, Theorem 5] when the matrix

M is square and nonsingular, and reduces to the classical chain rule wheng andh

are both differentiable. Significantly, the strict chain rule of Theorem 2.1 allows for

the development of a vector forward mode of automatic differentiation to calculate

LD-derivatives [7].

2.3 Generalized Derivatives of Ordinary Differential Equations

Given an open setX ⊂ R
n andf : X → R

m that is L-smooth atx ∈ X, ∂L f(x) ⊂ ∂Pf(x)

[10]. If f is PC1 at x thenf is L-smooth atx and∂Lf(x) ⊂ ∂Bf(x) [7]. Prompted by

these relations and the discussions in Section 2.1 on the usefulness of elements of

the plenary Jacobian, obtaining an element of∂Lf(x) is therefore just as useful as

an element of the Clarke Jacobian in a variety of applications, and can be furnished
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via computingf′(x;M) for a square and nonsingular matrixM and solving the linear

equation systemf′(x;M) = JLf(x;M)M [7]. Motivated by these observations, Khan

and Barton found LD-derivatives of nonsmooth parametric ODEs [10, Theorem 4.2],

which is restated here for parametric ODEs whose right-handside functions depend

explicitly on parameters by virtue of its proof and the remarks following Example 4.2

in [10].

Theorem 2.2 Let np,nx ∈ N, nt = 1, D ⊂ R
nt × R

np × R
nx be open and connected,

t0,t f ∈ πtD satisfy t0 < t f , and Zf be a zero-measure subset of[t0,t f ]. Let f : D → R
nx

andf0 : πpD → πxD. Assume that the following conditions are satisfied:

(i) f(·,p,ηηη) is measurable on[t0, t f ] for each(p,ηηη) ∈ πp,xD;

(ii) f(t, ·, ·) is L-smooth onπp,x(D; t) for each t∈ [t0,t f ]\Zf;

(iii) there exist Lebesgue integrable functions kf ,mf : [t0,t f ] → R+∪{+∞} for which:

(a) ‖f(t,p,ηηη)‖ ≤ mf(t), ∀t ∈ [t0, t f ], ∀(p,ηηη) ∈ πp,x(D; t);

(b) ‖f(t,p1,ηηη1)− f(t,p2,ηηη2)‖ ≤ kf(t)‖(p1,ηηη1)− (p2,ηηη2)‖, ∀t ∈ [t0,t f ],

∀(p1,ηηη1),(p2,ηηη2) ∈ πp,x(D; t);

(iv) f0 is L-smooth onπpD;

(v) for somep0 ∈ πpD, there exists a solutionx(·,p0) of the following parametric

ODE system atp := p0:

ẋ(t,p) = f(t,x(t,p)), a.e. t∈ [t0,t f ],

x(t0,p) = f0(p),

which satisfies{(t,p0,x(t,p0)) : t ∈ [t0, t f ]} ⊂ D. Then, for each t∈ [t0,t f ], the map-

ping xt ≡ x(t, ·) is Lipschitz continuous on a neighborhood ofp0, with a Lipschitz
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constant that is independent of t. Moreover,xt is L-smooth atp0; for any k∈ N and

anyM ∈ R
np×k, the LD-derivative mapping̃X : [t0,t f ] → R

nx×k : t 7→ [xt ]
′(p0;M) is

the unique solution on[t0, t f ] of the following ODE system:

Ẋ(t) = [ft\Zf
]′(p0,x(t,p0);(M ,X(t))),

X(t0) = [f0]
′(p0;M).

(2)

Remark 2.1The right-hand side function(t,A) 7→ [ft\Zf
]′(p0,x(t,p0);(M ,A)) in (2)

is measurable with respect tot but not necessarily continuous with respect toA at

almost everyt ∈ [t0, t f ] (see [10, Example 4.1]). However, the columns of (2) can be

decoupled to yield a sequence ofk Carathéodory ODEs [10, Corollary 4.2]. Conse-

quently, thek columns of the matrix-valued functiont 7→ [xt ]
′(p0;M) are absolutely

continuous vector-valued functions mapping[t0,t f ] to R
nx.

3 Lexicographic Smoothness of Extended Implicit Functions

Clarke provided local inverse and implicit function theorems for locally Lipschitz

continuous functions [18], but without generalized derivative descriptions for said

nonsmooth inverse and implicit functions. Levy and Mordukhovich [38] derived an

implicit function theorem for coderivatives. Extending the results of Scholtes [9, The-

orem 3.2.3] concerning directional derivative information, Khan and Barton [11] es-

tablished results on the lexicographic smoothness of localinverse and implicit func-

tions and their corresponding LD-derivatives. For congruence with the present arti-

cle, the L-smooth implicit function result in [11] is restated with a stricter sufficient

condition concerning projections of Clarke Jacobians (seethe discussion following

Theorem 2 in [11]).
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Theorem 3.1 Let W ⊂ R
n × R

m be open. Suppose thatg : W → R
m is L-smooth

at (x∗,y∗) ∈ W, g(x∗,y∗) = 0m, and π2∂g(x∗,y∗) is of maximal rank. Then there

exist neighborhoods N(x∗) ⊂ πxW and N(x∗,y∗) ⊂W ofx∗ and(x∗,y∗), respectively,

and a functionr : N(x∗) → R
m that is Lipschitz continuous on N(x∗) such that, for

eachx ∈ N(x∗), (x, r(x)) is the unique vector in N(x∗,y∗) satisfyingg(x, r(x)) = 0m.

Moreover,r is L-smooth atx∗; for any k∈ N and anyM ∈ R
n×k, the LD-derivative

r ′(x∗;M) is the unique solutionN ∈ R
m×k of the equation system

g′(x∗,y∗;(M ,N)) = 0m×k. (3)

In [35], an extended implicit function theorem was providedfor locally Lipschitz

continuous functions. The lexicographic smoothness of such an extended implicit

function is detailed in the next result.

Theorem 3.2 Let W⊂ R
n×R

m be open andΩ ⊂W be a compact set such that each

x ∈ πxΩ is the projection of only one point(x,y) ∈ Ω . Suppose thatg : W → R
m is L-

smooth on W,g(Ω) = {0m}, andπ2∂g(x,y) is of maximal rank for each(x,y) ∈ Ω .

Then there existδ ,ρ > 0 and a functionr : Bδ (πxΩ) ⊂ πxW → R
m that is Lipschitz

continuous and L-smooth on Bδ (πxΩ) such thatπ2∂g(x,y) is of maximal rank for

all (x,y) ∈ Bρ(Ω) ⊂ W and, for eachx ∈ Bδ (πxΩ), (x, r(x)) is the unique vector in

Bρ(Ω) satisfyingg(x, r(x)) = 0m. Moreover, for anyx ∈ Bδ (πxΩ), any k∈ N, and

anyM ∈ R
n×k, r ′(x;M) is the unique solutionN ∈ R

m×k of the equation system

g′(x, r(x);(M ,N)) = 0m×k. (4)

Proof By [35, Theorem 3.6], there existδ1,ρ1 > 0 and a function

r1 : Bδ1
(πxΩ) ⊂ πxW → R

m
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that is Lipschitz continuous onBδ1
(πxΩ) such thatπ2∂g(x,y) is of maximal rank for

all (x,y) ∈ Bρ1(Ω) ⊂ W and, for eachx ∈ Bδ1
(πxΩ), (x, r1(x)) is the unique vector

in Bρ1(Ω) satisfyingg(x, r1(x)) = 0m.

Let Ω̃ :=
{
(x, r1(x)) : x ∈ B̄0.5δ1

(πxΩ)
}

⊂ Bρ1(Ω) ⊂ W, which is a compact set

such that each pointx ∈ πxΩ̃ = B̄0.5δ1
(πxΩ) ⊂ Bδ1

(πxΩ) is the projection of only

one point inΩ̃ (namely,(x, r1(x))). Moreover,π2g(x,y) is of maximal rank for all

(x,y) ∈ Ω̃ ⊂ Bρ1(Ω) andg(Ω̃) = {0m}. Therefore, [35, Theorem 3.6] can be applied

once more to yield the existence ofδ2,ρ2 > 0 and a function

r2 : Bδ2
(πxΩ̃) ⊂ πxW → R

m

that is Lipschitz continuous onBδ2
(πxΩ̃) such thatπ2∂g(x,y) is of maximal rank for

all (x,y) ∈ Bρ2(Ω̃) ⊂ W and, for eachx ∈ Bδ2
(πxΩ̃), (x, r2(x)) is the unique vector

in Bρ2(Ω̃) satisfyingg(x, r2(x)) = 0m.

Choose anŷx ∈ πxΩ̃ . By virtue of the proof of [35, Theorem 3.6], there exist a

neighborhoodN(x̂) ⊂ πxW of x̂ and a Lipschitz continuous function

r x̂ : N(x̂) → R
m

such thatg(x̂, ŷ) = 0m, whereŷ := r x̂(x̂), andπ2∂g(x̂, ŷ) is of maximal rank. More-

over, r x̂ = r2 on N(x̂)∩ πxΩ̃ . By Theorem 3.1,r x̂ is L-smooth atx̂; for any k ∈ N

and anyM ∈ R
n×k, [r x̂]

′(x̂;M) = [r2]
′(x̂;M) is the unique solutionN ∈ R

m×k of the

equation system

0m×k = g′(x̂, ŷ;(M ,N)) = g′(x̂, r2(x̂);(M ,N)).

Let δ := 0.5δ1, ρ := ρ1, and

r : Bδ (πxΩ) ⊂ πxW → R
m : ηηη 7→ r2(ηηη).



Generalized Derivatives of Differential-Algebraic Equations 17

r is Lipschitz continuous onBδ (πxΩ) ⊂ πxΩ̃ ⊂ Bδ2
(πxΩ̃) andπ2∂g(x,y) is of max-

imal rank for all(x,y) ∈ Bρ(Ω̃ ) = Bρ1(Ω̃ ) ⊂ W. By uniqueness,r1 = r2 on the set

Bδ1
(πxΩ)∩Bδ2

(πxΩ̃) ⊃ Bδ (πxΩ); for eachx ∈ Bδ (πxΩ),

(x, r(x)) = (x, r1(x)) = (x, r2(x))

is the unique vector inBρ1(Ω̃ ) satisfyingg(x, r(x)) = 0m. Moreover,r is L-smooth

on Bδ (πxΩ) ⊂ πxΩ̃ ; for anyx ∈ Bδ (πxΩ), anyk ∈ N, and anyM ∈ R
n×k, the LD-

derivativer ′(x;M) = [r2]
′(x;M) is the unique solutionN ∈ R

m×k of the equation

system

0m×k = g′(x, r2(x);(M ,N)) = g′(x, r(x);(M ,N)).

⊓⊔

Remark 3.1The implicit functionr outlined in the statement of Theorem 3.2 is L-

smooth on its open domainBδ (πxΩ) ⊃ πxΩ , which is needed for the higher-order

directional derivatives outlined earlier to be well-defined and is essential for the anal-

ysis to follow. The fact thatr is also Lipschitz continuous onBδ (πxΩ) is not imme-

diately implied by its L-smoothness. Moreover, whenΩ is a singleton, Theorem 3.1

is recovered.

4 Forward Sensitivity Functions for Nonsmooth Differential-Algebraic

Equations

Let np,nx,ny ∈ N. Let Dt ⊂ R, Dp ⊂ R
np, Dy ⊂ R

ny, andDx ⊂ R
nx be open and

connected. LetD := Dt ×Dp×Dx×Dy, f : D → R
nx, g : D → R

ny, andf0 : Dp → Dx.
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Given t0 ∈ Dt , consider the following initial-value problem (IVP) in semi-explicit

DAEs:

ẋ(t,p) = f(t,p,x(t,p),y(t,p)), (5a)

0ny = g(t,p,x(t,p),y(t,p)), (5b)

x(t0,p) = f0(p), (5c)

wheret is the independent variable andp ∈ Dp is a vector of the problem parameters.

The following assumption is made regarding the right-hand side functions in (5).

Assumption 4.1 Let t f ∈ Dt satisfyt0 < t f andZf be a zero-measure subset of[t0,t f ].

Suppose that the following conditions hold:

(i) f(·,p,ηηηx,ηηηy) is measurable on[t0, t f ] for each(p,ηηηx,ηηηy) ∈ Dp ×Dx ×Dy;

(ii) f(t, ·, ·, ·) is L-smooth onDp ×Dx ×Dy for eacht ∈ [t0,t f ]\Zf;

(iii) there exist Lebesgue integrable functionskf ,mf : [t0,t f ] → R+∪{+∞} for which:

(a) ‖f(t,p,ηηηx,ηηηy)‖ ≤ mf(t), ∀t ∈ [t0, t f ], ∀(p,ηηηx,ηηηy) ∈ Dp ×Dx ×Dy;

(b) ‖f(t,p1,ηηηx1,ηηηy1)− f(t,p2,ηηηx2,ηηηy2)‖ ≤ kf(t)‖(p1,ηηηx1,ηηηy1)−(p2,ηηηx2,ηηηy2)‖,

∀t ∈ [t0, t f ], ∀(p1,ηηηx1,ηηηy1),(p2,ηηηx2,ηηηy2) ∈ Dp ×Dx ×Dy;

(iv) g andf0 are L-smooth onD andDp, respectively.

Notions of consistent initialization, regularity, and solutions of (5) from [35] are

reproduced here for the reader’s convenience.
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Definition 4.1 The consistency set, initial consistency set, and regularity set of (5)

are given by, respectively,

GC := {(t,p,ηηηx,ηηηy) ∈ D : g(t,p,ηηηx,ηηηy) = 0ny},

GC,0 := {(t,p,ηηηx,ηηηy) ∈ GC : t = t0,ηηηx = f0(p)},

GR := {(t,p,ηηηx,ηηηy) ∈ D : π4∂g(t,p,ηηηx,ηηηy) is of maximal rank}.

Definition 4.2 Let P ⊂ Dp, Ω0 ⊂ GC,0, andT ⊂ Dt be a connected set containingt0.

A mappingz ≡ (x,y) : T ×P → Dx ×Dy is called a solution of (5) onT ×P through

Ω0 if, for eachp ∈ P, z(·,p) is an absolutely continuous function onT which satisfies

(5a) for almost everyt ∈ T, (5b) for everyt ∈ T, (5c) att = t0, and

{(t0,p,x(t0,p),y(t0,p)) : p ∈ P} = Ω0.

If, in addition,

{(t,p,x(t,p),y(t,p)) : (t,p) ∈ T ×P} ⊂ GR,

thenz is called a regular solution of (5) onT ×P throughΩ0.

Definition 4.3 Let z be a solution of (5) onT × P throughΩ0. Thenz is said to

be unique if, given any other solutionz∗ of (5) on T∗ × P∗ throughΩ ∗
0 satisfying

T ∩T∗ 6= {t0}, P∩P∗ 6= /0, and

{(t0,p,z(t0,p)) : p ∈ P∩P∗} = {(t0,p,z∗(t0,p)) : p ∈ P∩P∗},

z(t,p) = z∗(t,p) for all (t,p) ∈ (T ∩T∗)× (P∩P∗).

A generalization of the notion that (5) has differential index equal to one (see

[14, 22]) for all (t,p) ∈ T × P is implied by regularity. The following assumption

regarding the existence of a solution is made.
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Assumption 4.2 Suppose that for some(p0,x0,y0) ∈ Dp × Dx × Dy, there exists a

regular solutionz of (5) on[t0, t f ]×{p0} through{(t0,p0,x0,y0)}.

Before proceeding to the main result, a proposition is proved concerning unique-

ness and parametric dependence of solutions of (5), as well as its equivalence to

parametric Carathéodory ODEs via an extended implicit function.

Proposition 4.1 Let Assumptions 4.1 and 4.2 hold. Then there exists a neighborhood

N(p0) ⊂ Dp of p0, a setΩ0 ⊂ GC,0 containing(t0,p0,x0,y0), and a unique regular

solutionz of (5) on [t0, t f ]×N(p0) throughΩ0. Furthermore, there existδ ,ρ > 0 and

a function

r : Bδ ({(t,p0,x(t,p0)) : t ∈ [t0, t f ]}) ⊂ Dt ×Dp×Dx → R
ny

that is Lipschitz continuous and L-smooth on its open and connected domain which

satisfyy(t,p) = r(t,p,x(t,p)) for all (t,p) ∈ [t0,t f ]×N(p0) and

{(t,p,x(t,p)) : (t,p) ∈ [t0, t f ]×N(p0)} ⊂ Bδ ({(t,p0,x(t,p0)) : t ∈ [t0,t f ]}),

{(t,p,z(t,p)) : (t,p) ∈ [t0, t f ]×N(p0)} ⊂ Bρ({(t,p0,z(t,p0)) : t ∈ [t0,t f ]}) ⊂ D.

Proof Define the following compact sets:

Λ := {(t,p0,x(t,p0)) : t ∈ [t0,t f ]},

Ω := {(t,p0,x(t,p0),y(t,p0)) : t ∈ [t0,t f ]}.

π4∂g(t,p,ηηηx,ηηηy) is of maximal rank for all(t,p,ηηηx,ηηηy) ∈ Ω by regularity and

g(Ω) = {0ny} by consistency. Each point inΛ is the projection of a unique point

in Ω . By Theorem 3.2, there existδ1,ρ1 > 0 and a function

r : Bδ1
(Λ) ⊂ Dt ×Dp×Dx → R

ny
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that is Lipschitz continuous and L-smooth onBδ1
(Λ) such thatπ4∂g(t,p,ηηηx,ηηηy)

is of maximal rank for all(t,p,ηηηx,ηηηy) ∈ Bρ1(Ω) ⊂ D. Moreover, for each vector

(t,p,ηηηx)∈ Bδ1
(Λ), (t,p,ηηηx, r(t,p,ηηηx)) is the unique vector inBρ1(Ω) which satisfies

the equationg(t,p,ηηηx, r(t,p,ηηηx)) = 0ny.

By proceeding as in the proof of [35, Theorem 4.34] using the inherited L-

smoothness of the implicit function in place of the Lipschitzian construction, the fol-

lowing conclusions are immediately furnished: there existξ ,β > 0 satisfyingβ < ξ

and a regular solutionz of (5) on[t0, t f ]×Bβ(p0) ⊂ Dt ×Dp through

Ω0 := {(t,p,ηηηx,ηηηy) : t = t0,p ∈ Bβ (p0),ηηηx = f0(p),ηηηy = r(t0,p, f0(p))} ⊂ GC,0

such thaty(t,p) = r(t,p,x(t,p)) for all p ∈ Bβ (p0) and

{(t,p,x(t,p),y(t,p)) : (t,p) ∈ [t0,t f ]×Bβ(p0)} ⊂ Bρ1(Ω).

Moreover, the intermediate constructionu in the proof of [35, Theorem 4.34] satisfies

{(t,u(t,c)) : (t,c) ∈ [t0, t f ]×Bξ (p0, f0(p0))} ⊂ B0.5δ1
(Λ),




p

x(t,p)


 = u(t,(p, f0(p))), ∀(t,p) ∈ [t0,t f ]×Bβ (p0),

and{(p, f0(p)) : p ∈ Bβ (p0)} ⊂ Bξ (p0, f0(p0)). Thus,

{(t,p,x(t,p)) : (t,p) ∈ [t0, t f ]×Bβ(p0)}

= {(t,u(t,(p, f0(p))) : (t,p) ∈ [t0,t f ]×Bβ (p0)},

⊂ {(t,u(t,c)) : (t,c) ∈ [t0, t f ]×Bξ (p0, f0(p0))},

⊂ B0.5δ1
(Λ).
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Then [35, Theorem 4.22] implies thatz is the unique regular solution of (5) on

[t0,t f ]× Bβ(p0) throughΩ0 and the result holds withN(p0) := Bβ (p0), δ := 0.5δ1,

andρ := ρ1. ⊓⊔

Using lexicographic differentiation, forward sensitivity functions for (5) are given.

Theorem 4.1 Let Assumptions 4.1 and 4.2 hold. Then, for each t∈ [t0,t f ], the map-

ping zt ≡ z(t, ·) is L-smooth atp0; for any k ∈ N and anyM ∈ R
np×k, the LD-

derivative mapping

Z̃ ≡ (X̃, Ỹ) : [t0, t f ] → R
(nx+ny)×k : t 7→ [zt ]

′(p0;M)

is such that̃X and Ỹ are absolutely continuous and Lebesgue integrable on[t0,t f ],

respectively. Furthermore,̃Z uniquely (in the sense of Definition 4.3) satisfies the

following DAE system:

Ẋ(t) = [ft\Zf
]′(p0,x(t,p0),y(t,p0);(M ,X(t),Y(t))), a.e. t∈ [t0,t f ],

0ny×k = [gt ]
′(p0,x(t,p0),y(t,p0);(M ,X(t),Y(t))), ∀t ∈ [t0,t f ],

X(t0) = [f0]
′(p0;M),

(6)

on [t0,t f ] through {(t0,X0,Y0)}, whereX0 := [f0]
′(p0;M) and Y0 ∈ R

ny×k is the

unique solution of the equation system

0ny×k = [gt0]
′(p0,x0,y0;(M ,X0,Y0)).

Proof Let δ ,ρ > 0, r , andN(p0) be given as in the statement of Proposition 4.1.

Define the sets

Dδ := Bδ ({(t,p0,x(t,p0)) : t ∈ [t0,t f ]}) ⊂ Dt ×Dp×Dx,

Dρ := Bρ({(t,p0,z(t,p0)) : t ∈ [t0,t f ]}) ⊂ D,
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and the following mappings:

q : Dδ → Dp ×Dx ×Dy : (t,p,ηηηx) 7→ (p,ηηηx, r(t,p,ηηηx)),

f̄ : Dδ → R
nx : (t,p,ηηηx) 7→ f(t,q(t,p,ηηηx)).

For each(p,ηηηx) ∈ πp,xDδ ⊂ Dp ×Dx,

f̄(·,p,ηηηx) ≡ f(·,q(·,p,ηηηx)) : πt(Dδ ;(p,ηηηx)) ⊂ Dt → R
nx

is measurable on[t0, t f ] by [39, Chap. 1, Sect. 1, Lemma 1] because the mapping

t 7→ (p,ηηηx, r(t,p,ηηηx)) is continuous onπt(Dδ ;(p,ηηηx)) ⊃ [t0,t f ],

[t0, t f ]×q(Dδ ) ⊂ [t0, t f ]×Dp×Dx ×Dy, (7)

andf satisfies the Carathéodory conditions (see, e.g., [39]) on[t0,t f ]×Dp×Dx ×Dy

by assumption.

L-smoothness of̄f(t, ·, ·) is demonstrated as follows: for eacht ∈ [t0,t f ], the map-

ping (p,ηηηx) 7→ (p,ηηηx, r(t,p,ηηηx)) is L-smooth onπp,x(Dδ ; t) by L-smoothness ofr

on Dδ (and hencer t ≡ r(t, ·, ·) on πp,x(Dδ ; t)). Thus,qt ≡ q(t, ·, ·) is L-smooth on

πp,x(Dδ ; t). Since

qt(πp,x(Dδ ; t)) ⊂ πp,x,y(Dρ ; t) ⊂ Dp ×Dx ×Dy, ∀t ∈ [t0,t f ]\Zf,

and the composition of L-smooth functions is L-smooth, it follows that

f̄(t, ·, ·) ≡ f(t,q(t, ·, ·)) : πp,x(Dδ ; t) ⊂ Dp ×Dx → R
nx

is L-smooth onπp,x(Dδ ; t) for eacht ∈ [t0, t f ]\Zf.

For anyt ∈ [t0, t f ] and any(p,ηηηx) ∈ πp,x(Dδ ; t),

‖f̄(t,p,ηηηx)‖ = ‖f(t,p,ηηηx, r(t,p,ηηηx))‖ ≤ mf(t),
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by (7) and the Carathéodory conditions off. By Lipschitz continuity ofr onDδ , there

existskr ≥ 0 such that

‖r(t,p1,ηηηx1)− r(t,p2,ηηηx2)‖ ≤ kr‖(p1,ηηηx1)− (p2,ηηηx2)‖, (8)

for any(t,p1,ηηηx1),(t,p2,ηηηx2) ∈ Dδ . It follows that

‖f̄(t,p1,ηηηx1)− f̄(t,p2,ηηηx2)‖ = ‖f(t,p1,ηηηx1, r(t,p1,ηηηx1))− f(t,p2,ηηηx2, r(t,p2,ηηηx2))‖,

≤ kf(t)‖(p1,ηηηx1, r(t,p1,ηηηx1))− (p2,ηηηx2, r(t,p2,ηηηx2))‖,

≤ kf(t)(1+kr)‖(p1,ηηηx1)− (p2,ηηηx2)‖,

for anyt ∈ [t0,t f ] and any(p1,ηηηx1),(p2,ηηηx2) ∈ πp,x(Dδ ; t).

By replacingf by f̄ andD by Dδ , it is valid to apply Theorem 2.2 to

u̇(t,p) = f̄(t,u(t,p)),

u(t0,p) = f0(p),

which admits the unique solutionx(·,p) on [t0,t f ] for eachp ∈ N(p0). Theorem 2.2

yields that, for eacht ∈ [t0, t f ], xt ≡ x(t, ·) is Lipschitz continuous on a neighborhood

Ñ(p0) ⊂ N(p0) of p0, with Lipschitz constantkx ≥ 0. For anyp1,p2 ∈ Ñ(p0),

‖y(t,p1)−y(t,p2)‖ = ‖r(t,p1,x(t,p1))− r(t,p2,x(t,p2))‖,

≤ kr‖(p1,x(t,p1))− (p2,x(t,p2))‖,

≤ kr (1+kx)‖p1 −p2‖,

since{(t,p,x(t,p)) : (t,p) ∈ [t0, t f ]× Ñ(p0)} ⊂ Dδ . This demonstrates Lipschitz con-

tinuity of yt on Ñ(p0), with a Lipschitz constant that is independent oft. From The-

orem 2.2 it also follows thatxt is L-smooth atp0, which implies that the mapping
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yt is L-smooth atp0 for any t ∈ [t0, t f ] sinceyt(·) ≡ r t(·,xt(·)) on N(p0) and r t is

L-smooth at(p0,xt(p0)).

Define the following mappings:

r̃ (0) : [t0, t f ]×R
np+nx → R

ny : (t,d) 7→ [r t ]
′(p0,x(t,p0);d),

r̃ (i) : [t0, t f ]×R
np+nx → R

ny : (t,d) 7→ [̃r (i−1),t ]
′(m(i), [xt ]

(i−1)
p0,M (m(i));d),

∀i ∈ {1, . . . ,k−1},

which are well-defined sincer is L-smooth onDδ ⊃ {(t,p0,x(t,p0)) : t ∈ [t0,t f ]}. It

will be shown by induction that, for eachi ∈ {0,1, . . . ,k−1}, r̃ (i)(·,d) is measurable

on [t0,t f ] for eachd ∈ R
np+nx andr̃ (i)(t, ·) is Lipschitz continuous onRnp+nx for each

t ∈ [t0,t f ], with a Lipschitz constant that is independent oft.

Consider the base case and choose anyd ∈ R
np+nx. The first part proceeds as in

the proof of [10, Theorem 4.1]: by construction,

{(t,p0,x(t,p0)) : t ∈ [t0,t f ]} ⊂ Dδ ,

where{(t,p0,x(t,p0)) : t ∈ [t0, t f ]} is compact andDδ is open. Thus,

{(t,p0,x(t,p0)) : t ∈ [t0, t f ]}∩ (R1+np+nx \Dδ ) = /0.

Let d̃ := (0,d). There existsε > 0 such that for anyt ∈ [t0,t f ] and anyτ ∈ [0,ε],

(t,p0,x(t,p0))+ τd̃ = (t,(p0,x(t,p0))+ τd) ∈ Dδ ;

this follows from [39, Chap. 2, Sect. 5, Lemma 1]. Sincet 7→ (p0,x(t,p0)) is contin-

uous on[t0,t f ], the composite mappingt 7→ r(t,(p0,x(t,p0))+ τd) is continuous on

[t0,t f ] for eachτ ∈ [0,ε]. The mapping

t 7→ lim
α↓0

r(t,(p0,x(t,p0))+ αd)− r(t,p0,x(t,p0))

α
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is the pointwise limit of a sequence of continuous functionsand is therefore measur-

able on[t0,t f ], from which it follows that̃r (0)(·,d) is measurable on[t0,t f ] for each

d ∈ R
np+nx.

Choose anyt ∈ [t0, t f ]. The functionr t is Lipschitz continuous onπp,x(Dδ ; t) and

directionally differentiable at(p0,x(t,p0)). By (8),kr acts as a Lipschitz constant for

r t in a neighborhood of(p0,x(t,p0)), and as a result

‖r̃ (0)(t,d1)− r̃ (0)(t,d2)‖ = ‖[r t ]
′(p0,x(t,p0);d1)− [r t ]

′(p0,x(t,p0);d2)‖,

≤ kr ‖d1 −d2‖, ∀t ∈ [t0,t f ], ∀d1,d2 ∈ R
np+nx,

by [9, Theorem 3.1.2]. Hence,̃r (0)(t, ·) is Lipschitz continuous onRnp+nx for each

t ∈ [t0,t f ], with Lipschitz constantkr .

Assume that the claim is true fori := j ∈ {0,1, . . . ,k−2} and choose any vector

d ∈ R
np+nx. From [10, Corollary 4.2],t 7→ [xt ]

(i−1)
p0,M

(m(i)) is an absolutely continuous

mapping on[t0, t f ] for eachi ∈ {1, . . . ,k}. Hence, the mapping

t 7→




m( j+1)

[xt ]
( j)
p0,M (m( j+1))


+ τd

is absolutely continuous, and therefore measurable, on[t0,t f ] for anyτ ≥ 0. By the

inductive assumption,̃r ( j)(·,ηηη) is a measurable mapping on[t0,t f ] for anyηηη ∈ R
np+nx

and there existsk̃r ( j)
≥ 0 such that

‖r̃ ( j)(t,d1)− r̃ ( j)(t,d2)‖ ≤ k̃r ( j)
‖d1 −d2‖, ∀t ∈ [t0,t f ], ∀d1,d2 ∈ R

np+nx.

Hence,

‖r̃ ( j)(t,d)‖ = ‖r̃ ( j)(t,d)− r̃ ( j)(t,0np+nx)‖ ≤ k̃r ( j)
‖d‖, ∀(t,d) ∈ [t0,t f ]×R

np+nx.
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Consequently, the mapping

t 7→
r̃ ( j)(t,(m( j+1), [xt ]

( j)
p0,M

(m( j+1)))+ τd)− r̃ ( j)(t,m( j+1), [xt ]
( j)
p0,M (m( j+1)))

τ

is Lebesgue integrable, and therefore measurable, on[t0,t f ] for any τ > 0 by [39,

Chap. 1, Sect. 1, Lemma 1]. Then, since the mappingr̃ ( j),t is directionally differen-

tiable at(m( j+1), [xt ]
( j)
p0,M

(m( j+1))), the mapping

t 7→ lim
α↓0

r̃ ( j)(t,(m( j+1), [xt ]
( j)
p0,M

(m( j+1)))+ αd)− r̃ ( j)(t,m( j+1), [xt ]
( j)
p0,M (m( j+1)))

α

is well-defined and is measurable on[t0, t f ] as the pointwise limit of a sequence of

measurable functions. Hence,r̃ ( j+1)(·,d) is measurable on[t0,t f ] for eachd ∈ R
np+nx.

Again by [9, Theorem 3.1.2], the finite constantk̃r ( j)
acts as a Lipschitz constant

for r̃ ( j+1),t ≡ [̃r ( j),t ]
′(m( j+1), [xt ]

( j)
p0,M

(m( j+1)); ·) onR
np+nx:

‖r̃ ( j+1)(t,d1)− r̃ ( j+1)(t,d2)‖ ≤ k̃r ( j)
‖d1 −d2‖, ∀t ∈ [t0,t f ], ∀d1,d2 ∈ R

np+nx,

implying that r̃ ( j+1)(t, ·) is Lipschitz continuous onRnp+nx for eacht ∈ [t0,t f ], with

a Lipschitz constant that is independent oft. The claim is therefore proved by induc-

tion.

Define the following mappings:

x̃(i) : [t0, t f ] → R
nx : t 7→ [xt ]

(i−1)
p0,M

(m(i)), ∀i ∈ {1, . . . ,k},

ỹ(i) : [t0, t f ] → R
ny : t 7→ r̃ (i−1)(t,m(i), [xt ]

(i−1)
p0,M

(m(i))), ∀i ∈ {1, . . . ,k}.

Choose anyi := j ∈ {1, . . . ,k}. For eachd ∈ R
np+nx, the mapping̃r ( j−1)(·,d) is mea-

surable on[t0,t f ]. Moreover, there existsk̃r ( j−1)
≥ 0 such that

‖r̃ ( j−1)(t,d1)− r̃ ( j−1)(t,d2)‖ ≤ k̃r ( j−1)
‖d1 −d2‖, ∀t ∈ [t0,t f ], ∀d1,d2 ∈ R

np+nx,
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and

‖r̃ ( j−1)(t,d)‖ = ‖r̃ ( j−1)(t,d)− r̃ ( j−1)(t,0np+nx)‖,

≤ k̃r ( j−1)
‖d‖, ∀(t,d) ∈ [t0,t f ]×R

np+nx.

It was demonstrated earlier that the mappingx̃( j) : t 7→ [xt ]
( j−1)
p0,M (m( j)) is absolutely

continuous on[t0, t f ]. x̃( j) is therefore measurable on[t0,t f ], from which it follows

thatỹ( j) is Lebesgue integrable on[t0, t f ] by [39, Chap. 1, Sect. 1, Lemma 1].

Define the following matrix-valued functions:

X̃ : [t0, t f ] → R
nx×k : t 7→ [x̃(1)(t) · · · x̃(k)(t)],

Ỹ : [t0, t f ] → R
ny×k : t 7→ [ỹ(1)(t) · · · ỹ(k)(t)].

For anyk ∈ N and anyM ∈ R
np×k, Theorem 2.2 implies that the LD-derivative map-

ping t 7→ [xt ]
′(p0;M) is the unique solution on[t0,t f ] of the following ODE system:

U̇(t) = [f̄t\Zf
]′(p0,x(t,p0);(M ,U(t))),

U(t0) = [f0]
′(p0;M).

(9)

By L-smoothness ofqt andr t at (p0,x(t,p0)) for eacht ∈ [t0,t f ], the LD-derivative

chain rule (1) yields

[ft\Zf
◦qt ]

′(p0,x(t,p0);(M ,A))

= [ft\Zf
]′(qt(p0,x(t,p0)); [qt ]

′(p0,x(t,p0);(M ,A))),

= [ft\Zf
]′(p0,x(t,p0), r(t,p0,x(t,p0));(M ,A, [r t ]

′(p0,x(t,p0);(M ,A)))),
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for any(t,A) ∈ [t0, t f ]×R
nx×k. Since (9) admits the unique solutioñX on [t0,t f ],

˙̃X(t) = [ft\Zf
]′







p0

x(t,p0)

r(t,p0,x(t,p0))




;




M

X̃(t)

[r t ]
′(p0,x(t,p0);(M , X̃(t)))







, (10)

for almost everyt ∈ [t0, t f ] and

X̃(t0) = [f0]
′(p0;M). (11)

For eacht ∈ [t0, t f ] and eachi ∈ {1, . . . ,k},

ỹ(i)(t) = r̃ (i−1)(t,m(i), [xt ]
(i−1)
p0,M

(m(i))),

= [r t ]
(i−1)
(p0,x(t,p0)),(M ,[xt ]′(p0;M))(m(i), [xt ]

(i−1)
p0,M

(m(i))),

from which it follows that

Ỹ(t) = [r t ]
′(p0,x(t,p0);(M , [xt ]

′(p0;M)),

= [r t ]
′(p0,x(t,p0);(M , X̃(t)), ∀t ∈ [t0,t f ]. (12)

(4) and the definition of the LD-derivative imply that, for each t ∈ [t0,t f ],

N := r ′(t,p0,x(t,p0);(01×k,M , [xt ]
′(p0;M))) = [r t ]

′(p0,x(t,p0);(M , X̃(t)))

is the unique solution of

0ny×k = g′(t,p0,x(t,p0),y(t,p0);(01×k,M , [xt ]
′(p0;M),N)),

= [gt ]
′(p0,x(t,p0),y(t,p0);(M , X̃(t),N)).

Hence,

0ny×k = [gt ]
′(p0,x(t,p0),y(t,p0);(M , X̃(t), Ỹ(t))), ∀t ∈ [t0,t f ]. (13)
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For eacht ∈ [t0, t f ], the L-smoothness ofyt was established earlier; the LD-

derivative chain rule yields

[yt ]
′(p0;M) = [r t ]

′(p0,x(t,p0);(M , [xt ]
′(p0;M))) = Ỹ(t), ∀t ∈ [t0,t f ].

Evaluation of (13) att = t0 yields the fact that̃Y(t0) is the unique solutionY0 ∈ R
ny×k

of the equation system

0ny×k = [gt0]
′(p0,x0,y0;(M , [f0]

′(p0;M),Y0)),

sincex(t0,p0) = x0, y(t0,p0) = y0, andX̃(t0) = [f0]
′(p0;M). The conclusion of the

theorem holds by virtue of (10)-(13) and the observation that y(t,p0)= r(t,p0,x(t,p0)),

X̃(t) = [xt ]
′(p0,M), andỸ(t) = [yt ]

′(p0,M) hold for all t ∈ [t0,t f ]. ⊓⊔

Remark 4.1If f, g, andf0 areC1 on their respective domains, thenZf = /0 and, as

expected, (6) simplifies to

Ẋ(t) =
∂ f
∂p

M +
∂ f
∂x

X(t)+
∂ f
∂y

Y(t),

0ny×k =
∂g
∂p

M +
∂g
∂x

X(t)+
∂g
∂y

Y(t),

X(t0) = Jf0(p0)M ,

where the partial derivatives off andg are evaluated at(t,p0,x(t,p0),y(t,p0)), which

has been omitted for brevity.

Remark 4.2Given a regular solutionzof (5) on[t0,t f ]×{p0} through{(t0,p0,x0,y0)}

and any nonsingularM ∈ R
np×np, (X(t f ),Y(t f )) := [zt f ]

′(p0;M) can be obtained by

evaluating the unique solution of the auxiliary nonsmooth DAE system (6) att = t f .
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As an element of the lexicographic subdifferential,



JLxt f (p0;M)

JLyt f (p0;M)


 = JLzt f (p0;M)

is a computationally relevant object related to the parametric sensitivities of the differ-

ential variablesx and algebraic variablesy, respectively, att = t f . It can be furnished

by solving the following linear equation system:



X(t f )

Y(t f )


 =




JLxt f (p0;M)

JLyt f (p0;M)


M .

Remark 4.3Mirroring the discussion in Remark 2.1, the right-hand sidefunction

(t,A) 7→ [f̄t\Zf
]′(p0,x(t,p0);(M ,A)) in (9) need not satisfy the Carathéodory condi-

tions, but thek columns of the matrix-valued functiont 7→ [xt ]
′(p0;M) are nonethe-

less absolutely continuous on[t0, t f ]. However, thek columns of the matrix-valued

function t 7→ [yt ]
′(p0;M) are Lebesgue integrable vector-valued functions mapping

[t0,t f ] to R
ny, and therefore may exhibit discontinuities with respect tothe indepen-

dent variable (as illustrated in Example 5.2).

5 Examples

In this section, examples are provided to highlight the theory.

Example 5.1Consider the following nonsmooth parametric DAEs:

ẋ(t, p) = 0.5sign(1− t)max{0, p}y(t, p),

0 = |x(t, p)|+ |y(t, p)|−1,

x(0, p) = arctan(p),

(14)
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where sign(·) denotes the signum function. Letp0 := 0,N(p0) :=]−0.5,0.5[, x0 := 0,

andy0 := 1. There exists a unique solutionz≡ (x,y) of (14) on[0,2]×N(p0) through

Ω0 := {(t, p,ηx,ηy) : t = 0, p ∈ N(p0),ηx = arctan(p),ηy = 1−|arctan(p)|}

which is given by

z : (t, p) 7→









(arctan(p)−1)exp(−0.5pt)+1

(1−arctan(p))exp(−0.5pt)


 , if (t, p) ∈ [0,1[×]0,0.5[,




(β (p)−1)exp(0.5p(t −1))+1

(1− β (p))exp(0.5p(t −1))


 , if (t, p) ∈ [1,2]×]0,0.5[,




arctan(p)

1+arctan(p)


 , if (t, p) ∈ [0,2]×]−0.5,0],

whereβ :]0,0.5[→]0,1[: p 7→ (arctan(p)−1)exp(−0.5p)+1. The solution is regular

asπ4∂g(t, p,x(t, p),y(t, p)) = {1} for all (t, p) ∈ [0,2]×N(p0), sincey(t, p) > 0 for

all (t, p) ∈ [0,2]×N(p0). Note thatz(t,0) = (x(t,0),y(t,0)) = (0,1) for all t ∈ [0,2].

For anyd := (d1,d2,d3) ∈ R
3, [ f0]′(0;d1) = d1,

[ ft\{1}]
′(0,z(t,0);d) =





0.5max{0,d1}, if t ∈ [0,1[,

0, if t = 1,

−0.5max{0,d1}, if t ∈]1,2],

[gt ]
′(0,z(t,0);d) = |d2|+d3.

By Theorem 4.1,zt ≡ z(t, ·) is L-smooth atp0 for eacht ∈ [t0,t f ]; for anym∈ R,

the LD-derivative mapping̃Z ≡ (X̃,Ỹ) : t 7→ [zt ]
′(0;m) is the unique solution (in the
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sense of Theorem 4.1) of the following DAE system:

Ẋ(t) = 0.5sign(1− t)max{0,m},

0 = |X(t)|+Y(t),

X(0) = m,

(15)

on [0,2] through{(0,m,−|m|)}. Observe that the initial conditionY(0) in (15) is

uniquely determined fromX(0) (unlike in (14)), in accordance with Theorem 4.1. For

anym 6= 0, post-multiplying the unique solution(X̃(t),Ỹ(t)) of (15) bym−1 yields:

JLzt(0;m) =





{(0.5t +1,−0.5t −1)}, if t ∈ [0,1[,m> 0,

{(−0.5t +2,0.5t −2)}, if t ∈ [1,2],m> 0,

{(1,1)}, if t ∈ [0,2],m< 0,

so that

∂Lzt(0) =






{(0.5t +1,−0.5t −1),(1,1)}, if t ∈ [0,1[,

{(−0.5t +2,0.5t −2),(1,1)}, if t ∈ [1,2].

From the analytic solution, for eacht ∈ [0,1[,

Jzt(p) =








((1+ p2)−1 −0.5t(arctan(p)−1))exp(−0.5pt)

(−(1+ p2)−1 −0.5t(1−arctan(p)))exp(−0.5pt)


 , if p > 0,



(1+ p2)−1

(1+ p2)−1


 , if p < 0,
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and, for eacht ∈ [1,2],

Jzt(p) =








(β ′(p)+0.5(t −1)(β (p)−1))exp(0.5p(t −1))

(−β ′(p)+0.5(t −1)(1− β (p)))exp(0.5p(t −1))


 , if p > 0,




(1+ p2)−1

(1+ p2)−1


 , if p < 0.

Observe that, for eacht ∈ [0,2],

∂Lzt(0)⊂ ∂Bzt(0)=





{(1+0.5t,−1−0.5t),(1,1)}, if t ∈ [0,1[,

{(1.5−0.5(t −1),−1.5+0.5(t−1)),(1,1)}, if t ∈ [1,2],

which is as expected sincezt is PC1 onN(p0) for eacht ∈ [0,2].

Example 5.2Sensitivities of solutions of (5) with respect to initial data are easily

computed by Theorem 4.1. Suppose thatz is a unique regular solution of (5) (with

no explicit parametric dependence in the right-hand side functions) on[t0,t f ]×{c0}

through{(t0,c0,y0)} for some(c0,y0) ∈ Dx × Dy. Then, with analogous conditions

to the hypotheses of Theorem 4.1, the nonsmooth DAE system (6) simplifies to

Ẋ(t) = [ft\Zf
]′(x(t,c0),y(t,c0);(X(t),Y(t))),

0ny×k = [gt ]
′(x(t,c0),y(t,c0);(X(t),Y(t))),

X(t0) = M .

(16)
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As an illustration, consider the following IVP in DAEs:

ẋ1(t,c) = 1−y(t,c),

ẋ2(t,c) = x2(t,c),

0 = max{x1(t,c),x2(t,c)}+ |y(t,c)|−1,

x1(0,c) = c1,

x2(0,c) = c2.

(17)

Let c0 := (0,0), y0 := 1, and[t0, t f ] := [0,1]. Consider the parameter set

C := {(c1,c2) ∈ R
2 : 0 ≤ c1 < c2 ≤ 0.3}∪{c0}.

The unique solutionz ≡ (x,y) of (17) on[0,1]×C through

Ω0 := {(t,ηx1,ηx2,ηy) : t = 0,(ηx1,ηx2) ∈ C,ηy = 1−max{ηx1,ηx2}}

is given by

z : (t,c) 7→









c1 +c2(1−exp(−t))

c2exp(−t)

1−c2exp(−t)




, if t ∈ [0,τ(c)],




(c1 +c2(1−exp(−τ(c))))exp(t − τ(c))

c2exp(−t)

1− (c1+c2(1−exp(−τ(c))))exp(t − τ(c))




, if t ∈]τ(c),1],

where

τ : C → [0,0.7[: (c1,c2) 7→





ln
(

2c2
c1+c2

)
, if (c1,c2) ∈ C\ {c0},

0, if (c1,c2) = c0.
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The solution mappingz is regular becausey(t,c) > 0 for all (t,c) ∈ [0,1]×C implies

that π3∂g(t,x(t,c),y(t,c)) = {1} for all (t,c) ∈ [0,1]×C. In fact, there is a unique

regular solution of (17) on[0,1]× [−0.3,0.3]2 through a superset ofΩ0, which can

be calculated by inspection and isPC1 on its domain. However, its complete analytic

expression is omitted here to make this example less cumbersome.

The right-hand side functionsf andg in (17) areC1 andPC1 onR
3, respectively.

Note thatz(t,02) = (x(t,02),y(t,02)) = (0,0,1) for all t ∈ [0,1]. Let

A :=




a11 a12

a21 a22

a31 a32




∈ R
3×2.

For anyt ∈ [0,1] and anyd := (d1,d2,d3) ∈ R
3,

[gt ]
(0)
z(t,02),A

(d) = lim
α↓0

α−1(max{αd1,αd2}+ |1+ αd3|−1),

= max{d1,d2}+d3,

[gt ]
(1)
z(t,02),A

(d) = lim
α↓0

α−1(max{a11+ αd1,a21+ αd2}−max{a11,a21}+ αd3),

=






d1 +d3, if a11 > a21 or a11 = a21 andd1 ≥ d2,

d2 +d3, if a11 < a21 or a11 = a21 andd1 < d2.

Therefore, for anyt ∈ [0,1],

[ft ]′(z(t,02);A) = Jft(z(t,02))A =



−a31 −a32

−a21 −a22


 ,

[gt ]
′(z(t,02);A) =






[

a11+a31 a12+a32

]
, if a11 > a21 or a11 = a21,a12 ≥ a22,

[

a21+a31 a22+a32

]
, if a11 < a21 or a11 = a21,a12 < a22.
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Choose any directions matrixM ∈ R
2×2 with entries satisfying

0 < m22 < m11 < m21 < m12 ≤ 0.3

(which guarantees its nonsingularity). With these right-hand side functions, (16) ad-

mits the unique solutioñZ ≡ (X̃, Ỹ) : t 7→ [zt ]
′(c0;M) on [0,1] through

{(0,M , [−m21 −m22])}

given by

Z̃ : t 7→




m11+m21(1−exp(−t)) m12+m22(1−exp(−t))

m21exp(−t) m22exp(−t)

−m21exp(−t) −m22exp(−t)




,

if t ∈ [0,τ(m(1))], and

Z̃ : t 7→




β (m(1))exp(t − τ(m(1))) γ(m(1),m(2))exp(t − τ(m(1)))

m21exp(−t) m22exp(−t)

−β (m(1))exp(t − τ(m(1))) −γ(m(1),m(2))exp(t − τ(m(1)))




,

if t ∈]τ(m(1)),1], where

β : m(1) 7→ m11+m21(1−exp(−τ(m(1)))),

γ : (m(1),m(2)) 7→ m12+m22(1−exp(−τ(m(1)))).

The mappings̃X andỸ1 are absolutely continuous on[0,1] butỸ2 is not continuous at

τ(m(1)) ∈]0,1[. Post-multiplying̃Z(t f ) by M−1 furnishes the following L-derivative:

JLzt f (02;M) =




exp(1− τ(m(1))) (1−exp(−τ(m(1))))exp(1− τ(m(1)))

0 exp(−1)

−exp(1− τ(m(1))) −(1−exp(−τ(m(1))))exp(1− τ(m(1)))




.
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From the analytic solution with 0< c1 < c2 ≤ 0.3,

Jzt f (c) =




exp(1− τ(c)) (1−exp(−τ(c)))exp(1− τ(c))

0 exp(−1)

−exp(1− τ(c)) −(1−exp(−τ(c)))exp(1− τ(c))




.

Let c( j) := (m11/ j,m21/ j) for eachj ∈ N. Thenτ(c( j)) = τ(m(1)) for eachj ∈ N and

lim j→∞ Jzt f (c( j)) = JLzt f (02;M) ∈ ∂Lzt f (02) ⊂ ∂Bzt f (02), as expected.

6 Conclusions

A theory to compute lexicographic derivatives of solutionsof nonsmooth parametric

DAEs has been developed. These generalized derivatives arecomputationally rele-

vant and furnished via the solution of an auxiliary nonsmooth DAE system. The part

of this solution mapping that is associated with the algebraic variables exhibits fea-

tures that are unlike the original nonsmooth parametric DAEs of interest. Namely, it

need not be continuous with respect to the independent variable and its initial condi-

tion is uniquely determined from the algebraic constraintsof the auxiliary nonsmooth

DAE system.

Forward sensitivity functions for Carathéodory index-1 semi-explicit DAEs have

thus been characterized. Index refers here to a generalizeddifferential index, which

is formulated in terms of the projections of Clarke Jacobians being of maximal rank.

Existence and regularity of a solution of the nonsmooth parametric DAEs need only

be assumed on a finite horizon and at one parameter value for the theory to be appli-

cable. This work is a natural extension of the classical sensitivity results for the analo-

gous smooth case. Numerical solution of large-scale instances of the DAE system (6)
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will require automatic methods for evaluation of the LD-derivatives appearing in (6),

which is facilitated by a recently developed vector forwardmode of automatic differ-

entiation for LD-derivative evaluation [7]. Moreover, developing tractable methods

for simulating the auxiliary nonsmooth DAE systems found here is an avenue for fu-

ture work. Other possible directions for future work include extending the results to

“high-index” nonsmooth DAEs and adjoint sensitivity results for nonsmooth DAEs.
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