Appendix A
In this section, we provide some essential mathematical concepts, lemmas and theorems, which have been used in the mathematical analysis throughout the paper.
Definition A.1
Let \(R(t)~(0\le t\le T)\) be a positive continuous function; then we define
$$\begin{aligned} W_{p}^{2,1 }(Q_T^R ):=\left\{ u\in L^{p} (Q_T^R ) : \partial _x^\alpha \partial _t^k u\in L^{p} (Q_T^R ),~~ |\alpha |+2k\le 2\right\} , \end{aligned}$$
with the norm \(||u||_{{W_{p}^{2,1}} (Q_T^R ) }:=\displaystyle {\sum _{|\alpha |+2k\le 2}}||\partial _x^\alpha \partial _t^k u||_{L^{p} (Q_T^R )}\), where \(Q_T^R:=\Big \{(x,t)\in \mathbb {R}^{3}\times \mathbb {R}: |x|< R(t) ,0<t<T\Big \}.\)
Definition A.2
Let \(\Omega \subseteq \mathbb {R}^3\) be an open set and \(p>\dfrac{5}{2}\); then we define \(D_{p}(\Omega )\) the trace space of \(W_{p}^{2,1}(\Omega \times ]0,T[)\) at \(t=0\) as follows:
$$\begin{aligned} D_{p}(\Omega ):=\Big \{\varphi :\exists u\in W_{p}^{2,1}(\Omega \times ]0,T[)~s.t.~ u(., 0) = \varphi \Big \}, \end{aligned}$$
equipped with the norm \(||\varphi ||_{D_p (\Omega )} := \inf \Big \{T^{-\frac{1}{p}} ||u||_{W_{p}^{2,1}(\Omega \times ]0,T[)} : u\in W_{p}^{2,1} (\Omega \times ]0,T[),~ u(.,0)=\varphi \Big \}.\)
Lemma A.1
Assume that \(f\left( \rho ,\tau \right) ,~\psi (\rho ,\tau )\) and \(\varphi (\tau )\) are bounded continuous functions on \([0, 1] \times [0, T]\) and \(\ [0, T]\ (T>0)\), respectively, and let \(\overline{c}\) be a constant and \({c}_{ 0}\) be a function on [0, 1] such that \(c_0(\left| x\right| )\in D_p(B_1)\) for some \(p>5\), where \(B_1\) is a unit ball in \(\mathbb {R}^3 \). Then, the problem
$$\begin{aligned} \dfrac{\partial c }{\partial \tau }= & {} \dfrac{1}{{\rho }^2}\dfrac{\partial }{\partial \rho }\left( {\rho }^2\dfrac{\partial c }{\partial \rho }\right) +\varphi \left( \tau \right) \rho \dfrac{\partial c }{\partial \rho }+\psi \left( \rho ,\tau \right) c+f(\rho ,\tau ) ,\\ 0< & {} \rho<1,~ 0< \tau \le T,\\ \dfrac{\partial c}{\partial \rho }(0,\tau )= & {} 0,~~c \left( 1,\tau \right) =\overline{c},~~ 0<\tau \le T,~c \left( \rho ,0\right) =c_0(\rho ),~~ 0\le \rho \le 1, \end{aligned}$$
has a unique solution such that \(c(|x|,\tau )\in W^{2,1}_p(Q^1_T)\), where \(Q^1_T:=\Big \{(x,\tau )\in \mathbb {R}^{3}\times \mathbb {R}: |x|< 1,~0<\tau < T\Big \}\). Also there exists a positive constant \(\mu \) depending only on p, T, \({||\psi ||}_{L^{ \infty }}\) and \({||\varphi ||}_{L^{\infty }}\) such that
$$\begin{aligned} {||c (|x|,\tau )||}_{W^{2,1}_p(Q^1_T)}\le \mu \left( \left| \overline{c }\right| +{\left| \left| {c }_0\left( |x|\right) \right| \right| }_{D_p\left( B_1\right) }+||f ||_{L^p}\right) , \end{aligned}$$
(64)
where \(\mu \) is bounded for T in any bounded set. Moreover, there exists a positive constant d such that
$$\begin{aligned} {||\partial _x^\beta c \big (|x|,\tau \big ) ||}_{L^{\infty }}\le s_1T^{\frac{1}{2}-\frac{5}{2p}} {||c (|x|,\tau )||}_{W^{2,1}_p\big (Q^1_T\big )}+s_2\delta ^{-1-\frac{5}{p}}||c \big (|x|,\tau \big )||_{L^p}, \end{aligned}$$
(65)
where \(|\beta |=1\) and \(\delta =\min \{d,\sqrt{T}\}\) and \(s_1\), \(s_2\) are positive constants, which depend on p. Also we have
$$\begin{aligned} {||c ||}_{L^{\infty }}\le e^{\mu _0T}\Big (\max \{\left| \overline{c }\right| +{\left| \left| {c }_0\right| \right| }_{L^{\infty }}\}+T||f ||_{L^\infty }\Big ), \end{aligned}$$
(66)
where \(\mu _0=0\) if \(\psi \left( \rho ,\tau \right) \le 0\) and \(\mu _0=\displaystyle \max _{\overline{Q^1_{T}}}\psi \) otherwise.
Proof
See [3, 4, 17, 18]. \(\square \)
Lemma A.2
Let \(z\left( \rho ,\tau \right) \) , \(h_{ij}(\rho ,\tau )\ (i, j=1,2,3)\) , \(g_i(\rho ,\tau )\ (i= 1, 2, 3)\) be bounded continuous functions on \([0, 1]\times [0, T]\), \(z\left( \rho ,\tau \right) \) be continuously differentiable with respect to \(\rho \) and \(z\left( 0,\tau \right) =z\left( 1,\tau \right) =0\). Then, for every \({\alpha }_0,\ {\beta }_0,\ {\gamma }_0\in \ C[0, 1]\), the problem
$$\begin{aligned} \dfrac{\partial \alpha }{\partial \tau }+z\left( \rho ,\tau \right) \dfrac{\partial \alpha }{\partial \rho }= & {} h_{11}\left( \rho ,\tau \right) \alpha +h_{12}\left( \rho ,\tau \right) \beta +h_{13}\left( \rho ,\tau \right) \gamma +g_1(\rho ,\tau ),\\ 0\le & {} \rho \le 1, \ 0<\tau \le T,\\ \dfrac{\partial \beta }{\partial \tau }+z\left( \rho ,\tau \right) \dfrac{\partial \beta }{\partial \rho }= & {} h_{21}\left( \rho ,\tau \right) \alpha +h_{22}\left( \rho ,\tau \right) \beta +h_{23}\left( \rho ,\tau \right) \gamma +g_2(\rho ,\tau ),\\ 0\le & {} \rho \le 1, \ 0<\tau \le T,\\ \dfrac{\partial \gamma }{\partial \tau }+z\left( \rho ,\tau \right) \dfrac{\partial \gamma }{\partial \rho }= & {} h_{31}\left( \rho ,\tau \right) \alpha +h_{32}\left( \rho ,\tau \right) \beta +h_{33}\left( \rho ,\tau \right) \gamma +g_3(\rho ,\tau ),\\ 0\le & {} \rho \le 1, \ 0<\tau \le T,\\ \alpha \left( \rho ,0\right)= & {} {\alpha }_0\left( \rho \right) ,\ \beta \left( \rho ,0\right) ={\beta }_0\left( \rho \right) ,\ \gamma \left( \rho ,0\right) ={\gamma }_0\left( \rho \right) ,~\ 0\le \rho \le 1, \end{aligned}$$
has a unique weak solution, which is continuous with respect to \((\rho ,\tau )\) and
$$\begin{aligned} {\Vert (\alpha ,\beta ,\gamma )\Vert }_{L^{\infty }}\le e^{TA_0\left( T\right) }\left( {\Vert ({\alpha }_0,{\beta }_0,{\gamma }_0)\Vert }_{L^{\infty }}+T{\Vert (g_1,g_2,g_3)\Vert }_{L^{\infty }}\right) , \end{aligned}$$
where \(A_0(T)=2{max \{{\Vert h_{ij}\Vert }_{L^{\infty }}i,j=1,2,3\}}.\) If \(h_{ij}(\rho ,\tau )\ (i, j=1, 2, 3)\) and \(g_{i}(\rho ,\tau )\ (i= 1, 2, 3)\) are continuously differentiable with respect to \(\rho \) and \({\alpha }_0,\ {\beta }_0,\ {\gamma }_0\in \ C^1[0, 1]\), then the weak solution of problem is a classical solution. Thus, we have
$$\begin{aligned} \left\| \left( \dfrac{\partial \alpha }{\partial \rho },\dfrac{\partial \beta }{\partial \rho },\dfrac{\partial \gamma }{\partial \rho }\right) \right\| _{L^{\infty }}\le & {} e^{\left( A_0\left( T\right) +A\left( T\right) \right) T}\Big (\left\| ({\alpha }_0',{\beta }_0',\gamma _0')\right\| _{L^{\infty }}\nonumber \\&+TA_1(T)e^{TA\left( T\right) }{\Vert ({\alpha }_0,{\beta }_0,{\gamma }_0)\Vert }_{L^{\infty }}\nonumber \\&+Te^{TA\left( T\right) }{\left\| \left( \dfrac{\partial g_1}{\partial \rho },\dfrac{\partial g_2}{\partial \rho },\dfrac{\partial g_3}{\partial \rho }\right) \right\| }_{L^{\infty }}\Big ), \end{aligned}$$
(67)
where \(A\left( T\right) ={\Vert \frac{\partial z}{\partial \rho }\Vert }_{L^{\infty }}, A_1(T)=2{max \Big \{{\Vert \frac{\partial h_{ij}}{\partial \rho } \Vert }_{L^{\infty }},~i,j=1,2,3\Big \}}.\)
Proof
See [3, 4]. \(\square \)
In the following theorem, the existence and uniqueness of the solution of (13)–(26) are proved.
Theorem A.1
Let assumptions A–C and initial condition (26) be satisfied. Then, the problem (13)–(25) has a unique solution for \(t\ge 0\). And for every \(T>0\), \(R\left( t\right) \in C^1\left[ 0,T\right] ,\ C,\ W\in W^{2,1}_p\left( {Q^R_T}\right) \) for \(p>5\) and \(P,Q,D\in C\left( \overline{Q^R_T}\right) \). Moreover, we have
$$\begin{aligned} P\left( r,t\right) +Q\left( r,t\right) +D\left( r,t\right)= & {} N,~~ 0\le r\le R\left( t\right) ,\ t\ge 0,\\ p,q,d\in & {} C^1\left( [0,1]\times [0,T]\right) . \end{aligned}$$
Proof
Using Lemmas A.1 and A.2, similar to the proof of the main theorem of [3], the desired result can be obtained. \(\square \)
Definition A.3
[17, 19] Let \(0<\alpha <1\) and \(\Omega \subset \mathbb {R}^n\) be bounded. Then, \(f\in C^{\alpha ,\frac{\alpha }{2}}(\overline{\Omega }\times [0,T])\) iff there exists a positive constant C such that
$$\begin{aligned} |f(x_1,t_1)-f(x_2,t_2)|\le C\Big (|x_1-x_2|^2+|t_1-t_2|\Big )^{\frac{\alpha }{2}},~\forall x_1,x_2\in \overline{\Omega },~\forall t_1,t_2\in [0,T]. \end{aligned}$$
Furthermore, for any nonnegative integer k we define
$$\begin{aligned} C^{2k+\alpha ,k+\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right):= & {} \left\{ f\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) : \partial _x^{\beta } \partial _t^{i} f\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\right. \right. \\&\left. \left. \times [0,T]\right) , |\beta |+2i\le 2k\right\} . \end{aligned}$$
Theorem A.2
Let \(\Omega \subset \mathbb {R}^n\) be bounded with boundary \(\partial \Omega \in C^\infty \) and \(0<\alpha <1\) and
$$\begin{aligned}&\dfrac{\partial c}{\partial t}-\sum _{i=1}^n\sum _{j=1}^n a_{ij}(x,t)D_{ij}c+\sum _{i=1}^n b_i(x,t)D_ic+d(x,t)c=g(x,t),\nonumber \\&(x,t)\in Q_T=\Omega \times ]0,T[,\nonumber \\&c(x,t)=\psi (x,t),~~(x,t)\in \partial Q_T\setminus (\Omega \times \{t=T\}), \end{aligned}$$
(68)
where \(\psi \in C^{2+\alpha ,1+\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) ,~ a_{ij},b_i,d\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) \), \(a_{ij}=a_{ji}\) and for constants \(0<C_1\le C_2\)
$$\begin{aligned} C_1|\lambda |^2\le \sum _{i=1}^n\sum _{j=1}^n a_{ij}(x,t)\lambda _i\lambda _j\le C_2|\lambda |^2,~~\forall \lambda \in \mathbb {R}^n,(x,t)\in Q_T. \end{aligned}$$
Also assume that \(g\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) \), then (68) has a unique solution such that
$$\begin{aligned} c,~\dfrac{\partial c}{\partial t},~\dfrac{\partial c}{\partial x_j},~\dfrac{\partial ^2 c}{\partial x_i\partial x_j}\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{\Omega }\times [0,T]\right) ,~~\forall i,j. \end{aligned}$$
Proof
See [17]. \(\square \)
Theorem A.3
Let X be a complete metric space and let \(f : X \rightarrow ]-\infty , +\infty ]\) be lower semicontinuous and bounded from below and \(\not \equiv +\infty \). Let \(\epsilon > 0\) and \(x_\epsilon \in X\) be such that \(f(x_\epsilon )\le \inf \Big \{f(x): x\in X\Big \}+\epsilon .\) Then, there exists \(y_\epsilon \in X\) such that
$$\begin{aligned} f(y_\epsilon )\le & {} f(x_\epsilon ),~~~d(x_\epsilon ,y_\epsilon )\le \epsilon ^{\frac{1}{2}},\\ f(y_\epsilon )< & {} f(x) + \epsilon ^{\frac{1}{2}}d(y_\epsilon , x),~~ \forall x \ne y_\epsilon . \end{aligned}$$
Proof
See [20]. \(\square \)
Theorem A.4
Let assumptions A–C and initial condition (42) be satisfied and \(u_1,u_2\in C([0, 1]\times [0, T])\). Then, there exist positive constants \(\delta _1\), \(\delta _2\) and \(\delta _3\) independent of \(\tau \) such that
$$\begin{aligned} \int _0^1\rho ^2c^2(\rho ,\tau )\hbox {d}\rho\le & {} \left( \int _0^1\rho ^2c^2(\rho ,0){\text{ d }}\rho +\int _0^\tau \left( \delta _1 \left| \left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1} \right| \right. \right. \\&\left. \left. +\delta _3\int _0^1\rho ^2({\eta } ^{2}f\left( c,p,q\right) -u_1)^2{\text{ d }}\rho \right) {\text{ ds }}\right) e^{\delta _2\int _0^\tau (|u\left( 1, s \right) |^2+1)\text{ ds }}, \end{aligned}$$
where c is the solution of (31)–(33). If in addition, \(u_1(|x|,\tau ),u_2(|x|,\tau )\in C^{\alpha ,\alpha /2}(\overline{Q^1_T})\), then the problem (31)–(36) has a unique solution \((c(\rho ,\tau ), w(\rho ,\tau ))\) such that \(\dfrac{\partial ^\kappa }{\partial \rho ^\kappa }\dfrac{\partial ^z}{\partial \tau ^z}c\) and \(\dfrac{\partial ^\kappa }{\partial \rho ^\kappa }\dfrac{\partial ^z}{\partial \tau ^z}w\) are continuous functions on \(]0,1[\times ]0,T[\), for each \(\kappa ,z\in \mathbb {N}_0\) with \(\kappa +2 z\le 2\).
Proof
From [17], we easily conclude that the problem (31)–(33) has a unique solution c such that \(c(|x|,\tau )\in W^{2,1}_p(Q^1_T)\). Therefore,
$$\begin{aligned} \int _0^1\rho ^2c\dfrac{\partial c}{\partial \tau }{\text{ d }}\rho= & {} D_{1}\int _0^1c\dfrac{\partial }{\partial \rho }\left( {\rho }^{2}\dfrac{\partial c}{\partial \rho }\right) {\text{ d }}\rho +u\left( 1, \tau \right) \int _0^1 \rho ^3c \dfrac{\partial c}{\partial \rho }{\text{ d }}\rho \\&-\int _0^1\rho ^2c({\eta } ^{2}f\left( c,p,q\right) -u_1){\text{ d }}\rho \\= & {} -D_{1}\int _0^1\rho ^2(\dfrac{\partial c}{\partial \rho })^2{\text{ d }}\rho +D_{1}\left( c(\rho ,\tau )\dfrac{\partial c(\rho ,\tau )}{\partial \rho }\right) \Big |_{\rho =1}\\&+u\left( 1, \tau \right) \int _0^1 \rho ^3c \dfrac{\partial c}{\partial \rho }{\text{ d }}\rho -\int _0^1\rho ^2c({\eta } ^{2}f\left( c,p,q\right) -u_1){\text{ d }}\rho . \end{aligned}$$
Thus,
$$\begin{aligned} \int _0^\tau \int _0^1\rho ^2c\dfrac{\partial c}{\partial s }{\text{ d }}\rho {\text{ d }}s= & {} \int _0^\tau ( -D_{1}\int _0^1\rho ^2(\dfrac{\partial c}{\partial \rho })^2{\text{ d }}\rho +D_{1}\left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1}\\&+u\left( 1, s \right) \int _0^1 \rho ^3c \dfrac{\partial c}{\partial \rho }{\text{ d }}\rho -\int _0^1\rho ^2c({\eta } ^{2}f\left( c,p,q\right) -u_1){\text{ d }}\rho ){\text{ d }}s. \end{aligned}$$
Therefore, we arrive at
$$\begin{aligned} \int _0^1\rho ^2c^2(\rho ,\tau ){\text{ d }}\rho= & {} \int _0^1\rho ^2c^2(\rho ,0){\text{ d }}\rho + 2\int _0^\tau ( -D_{1}\int _0^1\rho ^2\left( \dfrac{\partial c}{\partial \rho }\right) ^2{\text{ d }}\rho \\&+D_{1}\left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1} +u\left( 1, s \right) \int _0^1 \rho ^3c \dfrac{\partial c}{\partial \rho }{\text{ d }}\rho \\&-\int _0^1\rho ^2c\left( {\eta } ^{2}f\left( c,p,q\right) -u_1){\text{ d }}\rho \right) {\text{ d }}s. \end{aligned}$$
Hence, there exist positive constants \(\delta _1\), \(\delta _2\) and \(\delta _3\) independent of \(\tau \) such that
$$\begin{aligned} \int _0^1\rho ^2c^2(\rho ,\tau ){\text{ d }}\rho\le & {} \int _0^1\rho ^2c^2(\rho ,0){\text{ d }}\rho +\delta _1\int _0^\tau \left| \left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1}\right| {\text{ d }}s\\&+\int _0^\tau \left( \delta _2(|u\left( 1,s \right) |^2+1)\int _0^1 \rho ^2c^2{\text{ d }}\rho \right. \\&\left. +\delta _3\int _0^1\rho ^2({\eta } ^{2}f\left( c,p,q\right) -u_1)^2{\text{ d }}\rho \right) {\text{ d }}s. \end{aligned}$$
Now from the Gronwall’s inequality we conclude that
$$\begin{aligned} \int _0^1\rho ^2c^2(\rho ,\tau ){\text{ d }}\rho\le & {} \left( \int _0^1\rho ^2c^2(\rho ,0){\text{ d }}\rho +\int _0^\tau \left( \delta _1\left| \left( c(\rho ,s)\dfrac{\partial c(\rho ,s)}{\partial \rho }\right) \Big |_{\rho =1}\right| \right. \right. \\&\left. \left. +\delta _3\int _0^1\rho ^2({\eta } ^{2}f \left( c,p,q\right) -u_1)^2{\text{ d }}\rho \right) {\text{ d }}s\right) {e}^{\delta _2 \int _0^\tau (|u\left( 1, s \right) |^2+1){\text{ d }}s}. \end{aligned}$$
Also from (31)–(36), Theorem A.1 and t-Anisotropic Embedding Theorem [17], one can easily conclude that there exist functions \(f^1(|x|,\tau )\in C^{\alpha ,\frac{\alpha }{2}}(\overline{Q^1_T})\) and \(g^1(|x|,\tau )\in C^{\alpha ,\frac{\alpha }{2}}(\overline{Q^1_T})\), where \(Q^1_T\) is defined in Lemma A.1, such that \(\widehat{c}(x,\tau )=c(|x|,\tau )\) and \(\widehat{w}(x,\tau )=w(|x|,\tau )\) for \(|x|<1,0<\tau <T\) are the solutions of
$$\begin{aligned}&\dfrac{\partial \widehat{c}}{\partial \tau }-D_1\Delta \widehat{c}-u\left( 1, \tau \right) x.\nabla \widehat{c} =f^1(|x|,\tau ),~~|x|<1,~0<\tau \le T,\\&\widehat{c}(x,\tau )=c_1(\tau )+\overline{c},~~|x|=1,~0<\tau \le T,~\widehat{c}(x,0)=c_0(|x|)+\overline{c},~~|x|\le 1, \end{aligned}$$
and
$$\begin{aligned}&\dfrac{\partial \widehat{w}}{\partial \tau }-D_2\Delta \widehat{w}-u\left( 1, \tau \right) x.\nabla \widehat{w} =g^1(|x|,\tau ),~~|x|<1,~0<\tau \le T,\\&\widehat{w}(x,\tau )=w_1(\tau )+\overline{w},~~|x|=1,~0<\tau \le T,~\widehat{w}(x,0)=w_0(|x|)+\overline{w},~~|x|\le 1, \end{aligned}$$
respectively. Using Theorem A.2, assumptions A–C and Theorem A.1 one can easily arrive at
$$\begin{aligned} \widehat{c},~\dfrac{\partial \widehat{c}}{\partial \tau },~\dfrac{\partial \widehat{c}}{\partial x_j},~\dfrac{\partial ^2 \widehat{c}}{\partial x_i\partial x_j},~\widehat{w},~\dfrac{\partial \widehat{w}}{\partial \tau },~\dfrac{\partial \widehat{w}}{\partial x_j},~\dfrac{\partial ^2 \widehat{w}}{\partial x_i\partial x_j}\in C^{\alpha ,\frac{\alpha }{2}}\left( \overline{Q^1_T}\right) ,~~\forall i,j. \end{aligned}$$
Therefore, we get the desired result. \(\square \)
Theorem A.5
Let assumptions A–C and condition (42) be satisfied, also \((c_1,w_1,p_1,q_1,d_1,\eta _1)\) and \((c_2,w_2,p_2,q_2,d_2,\eta _2)\) be the exact solutions of the problem (31)–(41) corresponding to \((u^1_1,u^1_2,\overline{c}^1,\overline{w}^1)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) and\((u^2_1,u^2_2,\overline{c}^2,\overline{w}^2)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), respectively, where \(\mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) is admissible control set for FOCP (or SOCP). Then, there exist positive constants \(\mu _1\), \(\mu _1^*\), \(\beta _1\), \(\lambda _0\) and \(\lambda \), which are independent of \(\eta _0\) such that for
, where
we have
$$\begin{aligned}&{\Vert (c_1-c_2,w_1-w_2,p_1-p_2,q_1-q_2,d_1-d_2,\eta _1-\eta _2) \Vert }_{L^{\infty }}\\&\quad \le \lambda _0{\Vert \left( u^1_1-u^2_1,u^1_2-u^2_2, \overline{c}^1-\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^{\infty }},\\&{\Vert \rho (c_1-c_2,w_1-w_2,p_1-p_2,q_1-q_2,d_1-d_2,\eta _1-\eta _2) \Vert }_{L^2}\\&\quad \le \lambda {\Vert \rho \left( u^1_1-u^2_1,u^1_2-u^2_2,\overline{c}^1 -\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^2}. \end{aligned}$$
Proof
Let \(X_1:=\{(c,w,p,q,d,\eta ):\alpha \in C([0, 1]\times [0, T]), ~for~\alpha =c,w,p,q,d,\eta \}\). Clearly \((X_1,\Vert .\Vert _{L^\infty })\) is a Banach space. Now, using (31)–(41) we can define the operator \(F^{(u_1,u_2,\overline{c},\overline{w})}_1:X_1\rightarrow X_1\), such that \((c_1,w_1,p_1,q_1,d_1,\eta _1)\), the exact solution of the problem (31)–(41) corresponding to \((u^1_1,u^1_2,\overline{c}^1,\overline{w}^1)\), is the fixed point of \(F^{(u^1_1,u^1_2,\overline{c}^1,\overline{w}^1)}_1\) and also \((c_2,w_2,p_2,q_2,d_2,\eta _2)\), the exact solution of the problem (31)–(41) corresponding to \((u^2_1,u^2_2,\overline{c}^2,\overline{w}^2)\), is the fixed point of \(F^{(u^2_1,u^2_2,\overline{c}^2,\overline{w}^2)}_1\). Finally, by choosing appropriate \((c^{0}_1,w^{0}_1,p^{0}_1,q^{0}_1,d^{0}_1,\eta ^{0}_1)\in X_1\), \((c^{0}_2,w^{0}_2,p^{0}_2,q^{0}_2,d^{0}_2,\eta ^{0}_2)\in X_1\) and \(F^{(u_1,u_2,\overline{c},\overline{w})}_1\), using Lemmas A.1 and A.2 and Theorem A.4, we can prove that the sequences \(\{(c^n_1,w^n_1,p^n_1,q^n_1,d^n_1,\eta ^n_1)\}_{n=0}^{\infty }\) and \(\{(c^n_2,w^n_2,p^n_2,q^n_2,d^n_2,\eta ^n_2)\}_{n=0}^{\infty }\) with
$$\begin{aligned} \left( c^{n+1}_1,w^{n+1}_1,p^{n+1}_1,q^{n+1}_1,d^{n+1}_1,\eta ^{n+1}_1\right)= & {} F^{\left( u^1_1,u^1_2,\overline{c}^1,\overline{w}^1\right) }_1\left( c^{n}_1, w^{n}_1,p^{n}_1,q^{n}_1,d^{n}_1,\eta ^{n}_1\right) ,\\ \left( c^{n+1}_2,w^{n+1}_2,p^{n+1}_2,q^{n+1}_2,d^{n+1}_2,\eta ^{n+1}_2\right)= & {} F^{\left( u^2_1,u^2_2,\overline{c}^2,\overline{w}^2\right) }_1\left( c^{n}_2, w^{n}_2,p^{n}_2,q^{n}_2,d^{n}_2,\eta ^{n}_2\right) , \end{aligned}$$
converge to \((c_1,w_1,p_1,q_1,d_1,\eta _1)\) and \((c_2,w_2,p_2,q_2,d_2,\eta _2)\), respectively, and there exist positive constants \(\lambda ^n_0<\lambda _0\) and \(\lambda ^n<\lambda \) such that
$$\begin{aligned}&\Vert \left( c^{n+1}_1-c^{n+1}_2,w^{n+1}_1-w^{n+1}_2,p^{n+1}_1-p^{n+1}_2,q^{n+1}_1 -q^{n+1}_2,\right. \\&\quad \left. d^{n+1}_1{-}d^{n+1}_2,\eta ^{n+1}_1-\eta ^{n+1}_2\right) \Vert _{L^{\infty }}\le \lambda ^n_0{\Vert \left( u^1_1-u^2_1,u^1_2{-}u^2_2,\overline{c}^1 -\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^{\infty }},\\&\Vert \rho \left( c^{n+1}_1-c^{n+1}_2,w^{n+1}_1-w^{n+1}_2,p^{n+1}_1-p^{n+1}_2,q^{n+1}_1 -q^{n+1}_2,\right. \\&\left. \quad d^{n+1}_1-d^{n+1}_2,\eta _1^{n{+}1}{-}\eta _2^{n+1}\right) \Vert _{L^2} \le \lambda ^n{\Vert \rho \left( u^1_1{-}u^2_1,u^1_2-u^2_2,\overline{c}^1 {-}\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^2}. \end{aligned}$$
Therefore, we can obtain the result. \(\square \)
The next theorem shows that there exists a unique solution for the problem (49)–(59).
Theorem A.6
Let assumptions A–C be satisfied. Then, for \(t\ge 0\) the adjoint system (49)–(59) has a unique solution \(\left( z_c,z_w,z_p,z_q,z_d,z_\eta \right) \) and for every \(T>0\) we have
$$\begin{aligned}&z_c(|x|,\tau ),z_w(|x|,\tau )\in W^{2,1}_p\left( Q^1_T\right) ,~p>5,~z_\eta \left( \tau \right) \in C^1\left[ 0,T\right] ,\\&\quad _p,z_q,z_d\in C^1\left( [0,1]\times [0,T]\right) , \end{aligned}$$
where \(Q^1_T\) is defined in Lemma A.1.
Proof
Using the change of variable \(t=T-\tau \), employing Lemmas A.1 and A.2 and Theorem A.1, in a similar manner to the proof of the main theorem of [3], we obtain the result. \(\square \)
Theorem A.7
Let assumptions A–C and initial condition (42) be satisfied, also assume that \((z_c^1,z_w^1,z_p^1,z_q^1,z_d^1,z_\eta ^1)\) and \((z_c^2,z_w^2,z_p^2,z_q^2,z_d^2,z_\eta ^2)\) are the exact solutions of adjoint system (49)–(59) corresponding to the controls\((u^1_1,u^1_2,\overline{c}^1,\overline{w}^1)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) and \((u^2_1,u^2_2,\overline{c}^2,\overline{w}^2)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), respectively, where\(\mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) is admissible control set for FOCP (or SOCP). Then, there exist positive constants \(\mu _2\), \(\mu _2^*\), \(\beta _2\), \(\lambda ^*_1\) and \(\lambda ^*\), which are independent of \(\eta _0\) such that for
, where
and \(K_1\) is defined in Theorem A.5, we have
$$\begin{aligned}&{\Vert \left( z_c^1-z_c^2,z_w^1-z_w^2,z_p^1-z_p^2,z_q^1-z_q^2,z_d^1-z_d^2,z_\eta ^1 -z_\eta ^2\right) \Vert }_{L^{\infty }}\\&\quad \le \lambda ^*{\Vert \left( u^1_1-u^2_1,u^1_2-u^2_2,\overline{c}^1 -\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^{\infty }},\\&{\Vert \rho \left( z_c^1-z_c^2,z_w^1-z_w^2,z_p^1-z_p^2,z_q^1-z_q^2,z_d^1 -z_d^2,z_\eta ^1-z_\eta ^2\right) \Vert }_{L^2}\\&\quad \le \lambda ^*_1{\Vert \rho \left( u^1_1-u^2_1,u^1_2-u^2_2,\overline{c}^1 -\overline{c}^2,\overline{w}^1-\overline{w}^2\right) \Vert }_{L^2}, \end{aligned}$$
where \(\lambda ^*_1,\lambda ^*\rightarrow 0\) if \(T\rightarrow 0\).
Proof
Similar to the proof of Theorem A.5, the proof is concluded. \(\square \)
In the following, we provide the proofs of the theorems, which are addressed in Sect. 2.2.
Proof of Theorem 2.1
Let \(\left( c^*,w^*,p^*,q^*,d^*,\eta ^*\right) \) and \(\left( c^{\epsilon },w^{\epsilon },p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^{\epsilon }\right) \) be the solutions of (31)–(41) corresponding to the controls \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\) and \((u_1^{\epsilon },u_2^{\epsilon },{\overline{c}}^\epsilon ,{\overline{w}}^\epsilon ) =(u_1^*+\epsilon u_1^0,u_2^*+\epsilon u_2^0,{\overline{c}}^*+\epsilon {\overline{c}}_0,{\overline{w}}^*+\epsilon {\overline{w}}_0) \in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), respectively, where \(\mathcal {C}_\mathrm{{ad}}\), \(\mathcal {W}_\mathrm{{ad}}\), \(\mathcal {C}^1_\mathrm{{ad}}\) and \(\mathcal {W}^1_\mathrm{{ad}}\) are defined in (28)–(30) and \(\epsilon \) is a positive constant. Also assume that\(J(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)=\min \{J(u_1,u_2,\overline{c},\overline{w}):(u_1,u_2,\overline{c},\overline{w})\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\}\), \(c^{\epsilon }_1=\dfrac{c^{\epsilon }-c^*}{\epsilon },~w^{\epsilon }_1=\dfrac{w^{\epsilon }-w^*}{\epsilon },\)
\(p^{\epsilon }_1=\dfrac{p^{\epsilon }-p^*}{\epsilon },~q^{\epsilon }_1=\dfrac{q^{\epsilon }-q^*}{\epsilon },~d^{\epsilon }_1=\dfrac{d^{\epsilon }-d^*}{\epsilon }\) and \(\eta ^{\epsilon }_1=\dfrac{\eta ^{\epsilon }-\eta ^*}{\epsilon }.\) Therefore, one can arrive at
$$\begin{aligned} \dfrac{J(u_1^{\epsilon },u_2^{\epsilon },{\overline{c}}^\epsilon ,{\overline{w}}^\epsilon ) -J(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)}{\epsilon }= & {} \Big (\int _0^1\int _0^T\rho ^2\Big (\lambda _1\Big (p^*+p^{\epsilon }\Big )p^{\epsilon }_1 \nonumber \\&+\lambda _2\Big (q^*+q^{\epsilon }\Big )q^{\epsilon _1}+\left( u_1^*+u_1^{\epsilon } -2r_1^*\right) u_1^0\nonumber \\&+\Big (u_2^*+u_2^{\epsilon }-2r_2^*\Big )u_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau \nonumber \\&+\Big ({\overline{c}}^*+{\overline{c}}^\epsilon -2r_3^*\Big ){\overline{c}}_0 +\Big ({\overline{w}}^*+{\overline{w}}^\epsilon \nonumber \\&-2r_4^*\Big ){\overline{w}}_0\Big )\ge 0, \end{aligned}$$
(71)
and
$$\begin{aligned} \dfrac{\partial c^{\epsilon }_1}{\partial \tau }= & {} D_{1}\dfrac{1}{\rho ^2}\dfrac{\partial }{\partial \rho }\left( {\rho }^{2}\dfrac{\partial c^{\epsilon }_1}{\partial \rho }\right) +u^{\epsilon }\left( 1, \tau \right) \rho \dfrac{\partial c^{\epsilon }_1}{\partial \rho }+u^{\epsilon }_1\left( 1, \tau \right) \rho \dfrac{\partial c^*}{\partial \rho }\nonumber \\&-f^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },p^{\epsilon }, q^{\epsilon },\eta ^*,c^*,p^*,q^*\right) +u^0_{1}, \mathrm{\ 0}<\rho <1,\ \tau \mathrm{>}0, \end{aligned}$$
(72)
$$\begin{aligned} \dfrac{\partial c^{\epsilon }_1}{\partial \rho }\left( 0,\tau \right)= & {} 0, ~c^{\epsilon }_1\left( \mathrm{1,}\tau \right) \mathrm{=}{\overline{c}}_0, ~~\ \tau \mathrm{>}0, \end{aligned}$$
(73)
$$\begin{aligned} c^{\epsilon }_1\left( \rho ,0\right)= & {} \overline{c}_0,~\mathrm{\ 0}\le \rho \le \mathrm{1,} \end{aligned}$$
(74)
$$\begin{aligned} \dfrac{\partial w^{\epsilon }_1}{\partial \tau }= & {} D_{2}\dfrac{1}{{\rho }^{2}}\dfrac{\partial }{\partial \rho }\left( {\rho }^{2}\dfrac{\partial w^{\epsilon }_1}{\partial \rho }\right) +u^{\epsilon }\left( 1, \tau \right) \rho \dfrac{\partial w^{\epsilon }_1}{\partial \rho }+u^{\epsilon }_1\left( 1, \tau \right) \rho \dfrac{\partial w^*}{\partial \rho }\nonumber \\&-g^{\epsilon }_1\left( \eta ^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },\eta ^*,w^*,p^*,q^*\right) +u^0_{2}, \mathrm{\ 0}<\rho <1,\ \tau \mathrm{>}0, \end{aligned}$$
(75)
$$\begin{aligned} \dfrac{\partial w^{\epsilon }_1}{\partial \rho }\left( 0,\tau \right)= & {} 0,~w^{\epsilon }_1\left( \mathrm{1,}\tau \right) ={\overline{w}}_0, ~~\ \tau \mathrm{>}0, \end{aligned}$$
(76)
$$\begin{aligned} w^{\epsilon }_1\left( \rho ,0\right)= & {} {\overline{w}}_0,~\mathrm{\ \ 0}\le \rho \le \mathrm{1,} \end{aligned}$$
(77)
$$\begin{aligned} \dfrac{\partial p^{\epsilon }_1}{\partial \tau }\mathrm{+}v^{\epsilon }\dfrac{\partial p^{\epsilon }_1}{\partial \rho }+\mathrm{}v^{\epsilon }_1\dfrac{\partial p^*}{\partial \rho }= & {} G^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon },p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) \mathrm{, }\nonumber \\ \mathrm{0}\le & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0, \end{aligned}$$
(78)
$$\begin{aligned} \dfrac{\partial q^{\epsilon }_1}{\partial \tau }\mathrm{+}v^{\epsilon }\dfrac{\partial q^{\epsilon }_1}{\partial \rho }+\mathrm{}v^{{\epsilon }}_1\dfrac{\partial q^*}{\partial \rho }= & {} G^{\epsilon }_2\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) \mathrm{, }\nonumber \\ \mathrm{0}\le & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0, \end{aligned}$$
(79)
$$\begin{aligned} \dfrac{\partial d^{\epsilon }_1}{\partial \tau }\mathrm{+}v^{\epsilon }\dfrac{\partial d^{\epsilon }_1}{\partial \rho }+\mathrm{}v^{\epsilon }_1\dfrac{\partial d^*}{\partial \rho }= & {} G^{\epsilon }_3\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*, q^*,d^*\right) \mathrm{, }\nonumber \\ \mathrm{0}\le & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0, \end{aligned}$$
(80)
$$\begin{aligned} p^\epsilon _1\left( \rho ,0\right)= & {} 0,~~~q^\epsilon _1\left( \rho ,0\right) =0,~~~ d^\epsilon _1\left( \rho ,0\right) =0,~~~~\mathrm{0}\le \rho \le \mathrm{1,\ } \end{aligned}$$
(81)
$$\begin{aligned} \dfrac{\mathrm{1}}{{\rho }^{\mathrm{2}}}\dfrac{\partial }{\partial \rho }\left( {\rho }^{\mathrm{2}}u^{\epsilon }_1\right)= & {} h^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) ,\nonumber \\ \mathrm{0}< & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0,\nonumber \\ \dfrac{\mathrm{1}}{{\rho }^{\mathrm{2}}}\dfrac{\partial }{\partial \rho }\left( {\rho }^{\mathrm{2}}u^{\epsilon }\right)= & {} {\eta ^{\epsilon }}^2h\left( c^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },d^{\epsilon }\right) ,~~~\mathrm{0}< \rho \le \mathrm{1,\ }\tau \mathrm{>}0,\nonumber \\ \dfrac{d\eta ^{\epsilon }_1 (\tau )}{d\tau }= & {} \eta ^{\epsilon }_1(\tau )u^\epsilon ( 1,\tau )+\eta ^* (\tau )u^{\epsilon }_1( 1,\tau ),~~~\tau>0,\\ \eta ^{\epsilon }_1(0)= & {} 0,~~u^{\epsilon }_1\left( 0,\tau \right) \mathrm{=0,\ \ }~~u^{\epsilon }\left( 0,\tau \right) \mathrm{=0,\ \ }~\tau>0,\nonumber \\ v^{\epsilon }_1\left( \rho ,\tau \right)= & {} u^{\epsilon }_1\left( \rho ,\tau \right) \mathrm{-}\rho u^{\epsilon }_1\left( \mathrm{1,}\tau \right) ,~~v^{\epsilon }\left( \rho ,\tau \right) \mathrm{=}u^{\epsilon }\left( \rho ,\tau \right) \mathrm{-}\rho u^{\epsilon }\left( \mathrm{1,}\tau \right) ,\nonumber \\ \mathrm{0}\le & {} \rho \le \mathrm{1,\ }\tau \mathrm{>}0,\nonumber \end{aligned}$$
(82)
where
$$\begin{aligned}&f^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },p^{\epsilon }, q^{\epsilon },\eta ^*,c^*,p^*,q^*\right) =\dfrac{{\eta ^{\epsilon }}^2(\tau )f \left( c^{\epsilon },p^{\epsilon },q^{\epsilon }\right) -{\eta ^*}^2(\tau )f\left( c^*,p^*,q^*\right) }{\epsilon },\\&g^{\epsilon }_1\left( \eta ^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },\eta ^*,w^*,p^*,q^*\right) =\dfrac{{\eta ^{\epsilon }}^2(\tau )g \left( w^{\epsilon },p^{\epsilon },q^{\epsilon }\right) -{\eta ^*}^2(\tau )g\left( w^*,p^*,q^*\right) }{\epsilon },\\&G_i^{\epsilon }\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) \\&\quad = \dfrac{ G_i(\eta ^{\epsilon },c^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },d^{\epsilon })-G_i(\eta ^*,c^*,w^*,p^*,q^*,d^*)}{\epsilon },~~ i=1,2,3,\\&h^{\epsilon }_1\left( \eta ^{\epsilon },c^{\epsilon },w^{\epsilon },p^{\epsilon }, q^{\epsilon },d^{\epsilon },\eta ^*,c^*,w^*,p^*,q^*,d^*\right) \\&\quad = \dfrac{{\eta ^{\epsilon }}^2 h\left( c^{\epsilon },w^{\epsilon }, p^{\epsilon },q^{\epsilon },d^{\epsilon }\right) -{\eta ^*}^2 h \left( c^*,w^*,p^*,q^*,d^*\right) }{\epsilon }. \end{aligned}$$
Therefore, using (49)–(59), assumption A, Theorem A.5 and Lemmas A.1 and A.2 we deduce that
$$\begin{aligned}&\int _0^T\int _0^1\rho ^2 \Big (c^\epsilon _1\dfrac{\partial z_c}{\partial \tau } +z_c\dfrac{\partial c^\epsilon _1}{\partial \tau } +w^\epsilon _1\dfrac{\partial z_w}{\partial \tau } +z_w\dfrac{\partial w^\epsilon _1}{\partial \tau } +p^\epsilon _1\dfrac{\partial z_p}{\partial \tau } +z_p\dfrac{\partial p^\epsilon _1}{\partial \tau } +q^\epsilon _1\dfrac{\partial z_q}{\partial \tau }\\&\quad +z_q\dfrac{\partial q^\epsilon _1}{\partial \tau } +d^\epsilon _1\dfrac{\partial z_d}{\partial \tau } +z_d\dfrac{\partial d^\epsilon _1}{\partial \tau }\Big ) {\text{ d }}\rho {\text{ d }}\tau +\int _0^T\left( \eta ^\epsilon _1\dfrac{d z_\eta }{d \tau }+z_\eta \dfrac{d \eta ^\epsilon _1}{d \tau }\right) {\text{ d }}\tau =\\&\quad -\int _0^T\int _0^1\rho ^2\Big (\lambda _1p^*p^\epsilon _1 +\lambda _2q^*q^\epsilon _1-z_cu_1^0- z_wu_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau +\varpi (\epsilon ,\rho , T)\\&\quad -\int _0^TD_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )\overline{c}_0+D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )\overline{w}_0{\text{ d }}\tau , \end{aligned}$$
where \(\displaystyle {\lim _{\epsilon \rightarrow 0}}\varpi (\epsilon ,\rho , T)=0\). Thus, we have
$$\begin{aligned}&\int _0^T\int _0^1\rho ^2\Big (\lambda _1p^*p^\epsilon _1+\lambda _2q^*q^\epsilon _1-z_cu_1^0- z_wu_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau -\varpi (\epsilon ,\rho , T)\nonumber \\&\quad +\int _0^TD_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )\overline{c}_0+D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )\overline{w}_0{\text{ d }}\tau \nonumber \\&\quad =-\int _0^T\int _0^1\rho ^2 \Big (\dfrac{\partial z_cc^\epsilon _1}{\partial \tau } +\dfrac{\partial z_ww^\epsilon _1}{\partial \tau } +\dfrac{\partial z_pp^\epsilon _1}{\partial \tau } +\dfrac{\partial z_qq^\epsilon _1}{\partial \tau }+\dfrac{\partial z_dd^\epsilon _1}{\partial \tau }\Big ){\text{ d }}\rho {\text{ d }}\tau \nonumber \\&\qquad -\int _0^T\dfrac{{\hbox {d}} z_\eta \eta ^\epsilon _1}{\hbox {d} \tau } {\text{ d }}\tau =\int _0^1\rho ^2 \Big ( z_c(\rho ,0)\overline{c}_0 + z_w(\rho ,0)\overline{w}_0\Big ){\text{ d }}\rho . \end{aligned}$$
(83)
So using (71) and (83), we arrive at
$$\begin{aligned}&\int _0^1\int _0^T\rho ^2\Big (( z_c+u_1^*-r_1^*)u_1^0+( z_w+u_2^*-r_2^*)u_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau \nonumber \\&\quad +\left( \overline{c}^*-r_3^*-\int _0^T D_1 \dfrac{\partial z_c}{\partial \rho }(1,\tau )d\tau +\int _0^1 \rho ^2 z_c(\rho ,0)d\rho \right) {\overline{c}}_0\nonumber \\&\quad +\left( \overline{w}^*-r_4^*-\int _0^T D_2 \dfrac{\partial z_w}{\partial \rho }(1,\tau )d\tau +\int _0^1\rho ^2 z_w(\rho ,0)d \rho \right) {\overline{w}}_0 \ge 0. \end{aligned}$$
(84)
Therefore, using tangent-normal cone techniques [21] and (28)–(30), \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\) is as follows:
$$\begin{aligned} u_1^*= & {} \mathcal {F}_1(-z_c+r_1^*),~u_2^*=\mathcal {F}_2(-z_w+r_2^*),\\ {\overline{c}}^*= & {} \mathcal {F}_3\left( \int _0^T D_1\dfrac{\partial z_c}{\partial \rho }(1,\tau ){\text{ d }}\tau +r_3^*-\int _0^1\rho ^2 z_c(\rho ,0){\text{ d }}\rho \right) ,\\ {\overline{w}}^*= & {} \mathcal {F}_4\left( \int _0^T D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau ){\text{ d }}\tau +r_4^*-\int _0^1\rho ^2 z_w(\rho ,0){\text{ d }}\rho \right) . \end{aligned}$$
\(\square \)
Proof of Theorem 2.2
Using Theorem A.5, we conclude that for each
where
$$ \begin{aligned} \mathcal {C}^*_\mathrm{{ad}}:= & {} \Big \{ v\in L^\infty ([0, 1]\times [0, T]): l^{*}_1(\rho ,\tau )\le v(\rho ,\tau )\\&\le l^{**}_1(\rho ,\tau ),~a.e.~ (\rho ,\tau )\in [0, 1]\times [0, T]\Big \},\\ \mathcal {W}^*_\mathrm{{ad}}:= & {} \Big \{ v\in L^\infty ([0, 1]\times [0, T]): l^{*}_2(\rho ,\tau ) \le v(\rho ,\tau )\\&\le l^{**}_2(\rho ,\tau ),~a.e.~ (\rho ,\tau )\in [0, 1]\times [0, T]\Big \},\\ \mathcal {C}^{1*}_\mathrm{{ad}}:= & {} \Big \{ v\in L^\infty ( [0, T]):\exists c~\mathrm{{constant}}~s.t ~v(\tau )=c,~a.e.~\tau \in [0,T]~ \& ~ l^{*}_3\le c\\&\le l^{**}_3\Big \},\\ \mathcal {W}^{1*}_\mathrm{{ad}}:= & {} \Big \{ v\in L^\infty ( [0, T]):\exists c~\mathrm{{constant}}~s.t ~v(\tau )=c,~a.e.~\tau \in [0,T]~ \& ~ l^{*}_4\le c\\&\le l^{**}_4\Big \}, \end{aligned}$$
there exists a unique value \({J^*}(u_1,u_2,\overline{c},\overline{w})\) such that for every sequence \(\Big \{(u^n_1,u^n_2,\overline{c}^n,\overline{w}^n)\Big \}_{n=0}^{\infty }\) in \(\mathcal {C}_{ad}\times \mathcal {W}_{ad}\times \mathcal {C}^1_{ad}\times \mathcal {W}^1_{ad}\), which converges to \((u_1,u_2,\overline{c},\overline{w})\) in \({L^4_2([0, 1]\times [0, T])}:=L^2([0, 1]\times [0, T])\times L^2([0, 1]\times [0, T])\times L^2[0, T]\times L^2 [0, T]\), we have \({J}(u^n_1,u^n_2,\overline{c}^n,\overline{w}^n)\rightarrow {J^*}(u_1,u_2,\overline{c},\overline{w})\). Using the Lebesgue Dominated Convergence Theorem [22], we deduce that the function
$$\begin{aligned}&\mathcal {J}(u_1,u_2,\overline{c},\overline{w})\nonumber \\&={\left\{ \begin{array}{ll} {J}(u_1,u_2,\overline{c},\overline{w}),~~~~(u_1,u_2, \overline{c},\overline{w})\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}} \times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}},\\ {J^*}(u_1,u_2,\overline{c},\overline{w}),~~~~(u_1,u_2, \overline{c},\overline{w})\in \mathcal {C}^*_\mathrm{{ad}}\times \mathcal {W}^{*}_\mathrm{{ad}} \times \mathcal {C}^{1*}_\mathrm{{ad}}\times \mathcal {W}^{1*}_\mathrm{{ad}}\setminus C_4([0, 1]\times [0, T]),\\ +\infty ,~~~~~~~~~~~~~~~~~(u_1,u_2,\overline{c},\overline{w}) \in (\mathcal {C}^*_\mathrm{{ad}}\times \mathcal {W}^*_\mathrm{{ad}}\times \mathcal {C}^{1*}_\mathrm{{ad}} \times \mathcal {W}^{1*}_\mathrm{{ad}})^c\cap L^{4,2}_1([0, 1]\times [0, T]),\\ \end{array}\right. }\nonumber \\ \end{aligned}$$
(85)
is lower semicontinuous with respect to \((u_1,u_2,{\overline{c}},{\overline{w}})\) in \({L_1^{4,2}([0, 1]\times [0, T])}\), where
$$\begin{aligned} {L^{4,2}_1([0, 1]\times [0, T])}:= & {} \Big \{(f_1,f_2,f_3,f_4):(\rho ^2 f_1, \rho ^2 f_2,f_3,f_4)\in L^1([0, 1]\\&\times [0, T])\times L^1([0, 1] \times [0, T])\times L^1[0, T]\times L^1 [0, T]\Big \}. \end{aligned}$$
Using Theorem A.3, we conclude that for each positive \(\epsilon \) there exists \((u^\epsilon _1,u^\epsilon _2,\overline{c}^\epsilon ,\overline{w}^\epsilon )\) such that
$$\begin{aligned}&\mathcal {J}(u_1^\epsilon ,u^\epsilon _2,{\overline{c}}^\epsilon , {\overline{w}^\epsilon })<\mathcal {J}(u_1,u_2,{\overline{c}}, {\overline{w}})+\epsilon ^{\frac{1}{2}}\Big (\Vert \rho ^2(u_1-u_1^\epsilon )\Vert _{L^1} +\Vert \rho ^2(u_2-u_2^\epsilon )\Vert _{L^1}\nonumber \\&\quad +\Vert \overline{c} -\overline{c}^\epsilon \Vert _{L^1[0,T]}+\Vert \overline{w} -\overline{w}^\epsilon \Vert _{L^1[0,T]}\Big ), \forall (u_1,u_2,\overline{c},\overline{w})\not =(u_1^\epsilon ,u^\epsilon _2,\overline{c}^\epsilon ,\overline{w}^\epsilon ). \end{aligned}$$
(86)
In addition, each sequence \(\Big \{(u_1^n,u^n_2,\overline{c}^n,\overline{w}^n)\Big \}_{n=0}^{\infty }\) in \(\mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), which converges to \((u^\epsilon _1,u^\epsilon _2,\overline{c}^\epsilon ,\overline{w}^\epsilon )\) in \(L_2^4([0, 1]\times [0, T])\), is a Cauchy sequence in \(L_2^4([0, 1]\times [0, T])\). Also assume that for each \(n\in \mathbb {N}_0\), \((c_{n},w_{n},p_{n},q_{n},d_{n},\eta _{n})\) is the solution of (31)–(41) corresponding to \((u_1^{n},u^{n}_2,\overline{c}^{n},\overline{w}^{n})\). Therefore, according to Theorem A.5, the sequence
$$\begin{aligned} \Big \{\rho (c_{n},w_{n},p_{n},q_{n},d_{n},\eta _{n})\Big \}_{n=0}^{\infty }, \end{aligned}$$
is a Cauchy sequence in
$$\begin{aligned} L^6_2([0, 1]\times [0, T]):= & {} L^2([0, 1]\times [0, T])\times L^2([0, 1]\times [0, T]) \times L^2([0, 1]\\&\times [0, T])\times L^2([0, 1] \times [0, T]) \times L^2([0, 1]\times [0, T])\\&\times L^2[0, T]. \end{aligned}$$
So using the Lebesgue Dominated Convergence Theorem [22], we derive that for each \(p>5\) there exist subsequences \(\Big \{(u_1^{n_k},u^{n_k}_2,\overline{c}^{n_k},\overline{w}^{n_k})\Big \}_{k=0}^{\infty }\) and \(\Big \{(c_{n_k},w_{n_k},p_{n_k},q_{n_k},d_{n_k},\eta _{n_k})\Big \}_{k=0}^{\infty }\), which are Cauchy in
$$\begin{aligned} L_p^4([0, 1]\times [0, T]):= & {} L^p([0, 1]\times [0, T])\times L^p([0, 1] \times [0, T])\\&\times L^p[0, T]\times L^p [0, T], \end{aligned}$$
and
$$\begin{aligned} L^6_p([0, 1]\times [0, T]):= & {} L^p([0, 1]\times [0, T])\times L^p([0, 1] \times [0, T])\times L^p([0, 1]\\&\times [0, T])\times L^p([0, 1] \times [0, T]) \times L^p([0, 1]\times [0, T])\\&\times L^p[0, T], \end{aligned}$$
respectively. Thus, using Lemma A.1, it is easy to see that the sequences \(\Big \{(c_{n_k},w_{n_k},p_{n_k},q_{n_k},d_{n_k},\eta _{n_k})\Big \}_{k=0}^{\infty }\) and \(\Big \{(z_{c_{n_k}},z_{w_{n_k}},z_{p_{n_k}},z_{q_{n_k}},z_{d_{n_k}},z_{\eta _{n_k}})\Big \}_{k=0}^{\infty }\) are Cauchy in
$$\begin{aligned} W^{2,1,6}_p(Q^1_T):= & {} W^{2,1}_p(Q^1_T)\times W^{2,1}_p(Q^1_T) \times W^{2,1}_p(Q^1_T)\\&\times W^{2,1}_p(Q^1_T) \times W^{2,1}_p(Q^1_T)\times W^{2,1}_p(Q^1_T), \end{aligned}$$
where \((z_{c_{n_k}},z_{w_{n_k}},z_{p_{n_k}},z_{q_{n_k}},z_{d_{n_k}},z_{\eta _{n_k}})\) is the solution of (49)–(59) corresponding to \((u_1^{n_k},u^{n_k}_2,\overline{c}^{n_k},\overline{w}^{n_k})\). Therefore, there exist \(A=(c^\epsilon ,w^\epsilon ,p^\epsilon ,q^\epsilon ,d^\epsilon ,\eta ^\epsilon ,z^\epsilon _{c},z^\epsilon _{w},z^\epsilon _{p},z^\epsilon _{q},z^\epsilon _{d},z^\epsilon _{\eta })\) and sequences
and
such that
$$\begin{aligned} \lim _{m\rightarrow \infty }A_m= & {} A,~in~W^{2,1,12}_p(Q^1_T),\\ \lim _{m\rightarrow \infty }B_m= & {} (u^\epsilon _1,u^\epsilon _2,\overline{c}^\epsilon , \overline{w}^\epsilon ),~in~L^4_p([0, 1]\times [0, T]). \end{aligned}$$
From t-Anisotropic Embedding Theorem [17], we conclude that for \(0<\alpha <1\), each component of A belongs to \(C^{\alpha ,\frac{\alpha }{2}}(\overline{Q^1_T})\). Using the proof of Theorem 2.1 and tangent-normal cone techniques [21], for \(\epsilon \) small enough we have
$$\begin{aligned}&|u_1^\epsilon -\mathcal {F}_1(-z^\epsilon _c+r_1^*)|\le \epsilon ^{\frac{1}{2}},~|u_2^\epsilon -\mathcal {F}_2( -z^\epsilon _w+r_2^*)|\le \epsilon ^{\frac{1}{2}}, \end{aligned}$$
(87)
$$\begin{aligned}&\left| {\overline{c}}^\epsilon -\mathcal {F}_3\left( \int _0^T(D_1\dfrac{\partial z^\epsilon _c}{\partial \rho }(1,\tau )){\text{ d }}\tau +r_3^*-\int _0^1\rho ^2 z^\epsilon _c(\rho ,0){\text{ d }}\rho \right) \right| \le \epsilon ^{\frac{1}{2}}, \end{aligned}$$
(88)
$$\begin{aligned}&\left| {\overline{w}}^\epsilon -\mathcal {F}_4\left( \int _0^T(D_2\dfrac{\partial z^\epsilon _w}{\partial \rho }(1,\tau )){\text{ d }}\tau +r_4^*-\int _0^1\rho ^2 z^\epsilon _w(\rho ,0){\text{ d }}\rho \right) \right| \le \epsilon ^{\frac{1}{2}}. \end{aligned}$$
(89)
From Theorem A.7 and (49)–(54), it is clear that there exists a positive constant \(\beta ^*_0\), which is independent of T and \(\eta _0\) such that if \(T<\beta _0^*\min \{T_0,T_1\}\), then the function
$$\begin{aligned}&\mathcal {H}:\mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}} \times \mathcal {W}^1_\mathrm{{ad}}\rightarrow \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}} \times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}},\\&\mathcal {H}(u_1,u_2,\overline{c},\overline{w})=\left( \mathcal {F}_1(-z_c+r_1^*), \mathcal {F}_2(-z_w+r_2^*),\mathcal {F}_3\left( \int _0^T D_1\dfrac{\partial z_c}{\partial \rho }(1,\tau ){\text{ d }}\tau +r_3^*\right. \right. \\&\quad \left. -\int _0^1\rho ^2 z_c(\rho ,0){\text{ d }}\rho \right) ,\\&\left. \mathcal {F}_4\left( \int _0^T D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau ){\text{ d }}\tau +r_4^* -\int _0^1\rho ^2 z_w(\rho ,0){\text{ d }}\rho \right) \right) , \end{aligned}$$
where \(z_c\) and \(z_w\) are adjoint states corresponding to \((u_1,u_2,\overline{c},\overline{w})\), has a unique fixed point \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\). Also using (49)–(54), (86), Theorems A.5 and A.7, and the proof of Theorem A.4, it is easy to show that there exists a positive constant \(\beta ^*\), which is independent of T and \(\eta _0\) such that if \(T<\beta ^*\min \{T_0,T_1\}\), then the sequence \(\{(\rho u_1^\epsilon ,\rho u_2^\epsilon ,\overline{c}^\epsilon ,\overline{w}^\epsilon )\}\) has a subsequence, which converges to \((\rho u_1^*,\rho u_2^*,\overline{c}^*,\overline{w}^*)\) in \(L_2^4([0, 1]\times [0, T])\), as \(\epsilon \) converges to zero. Therefore, one can arrive at
$$\begin{aligned} \mathcal {J}(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\le \mathcal {J}(u_1,u_2, {\overline{c}},{\overline{w}}),~~\forall (u_1,u_2,{\overline{c}}, {\overline{w}})\in \mathcal {C}^*_\mathrm{{ad}}\times \mathcal {W}^*_\mathrm{{ad}} \times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}, \end{aligned}$$
which results in
$$\begin{aligned} {J}(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\le {J}(u_1,u_2, {\overline{c}},{\overline{w}}),~~\forall (u_1,u_2,{\overline{c}},{\overline{w}})\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}} \times \mathcal {W}^1_\mathrm{{ad}}. \end{aligned}$$
\(\square \)
Proof of Theorem 2.3
Let \(\left( c^*,w^*,p^*,q^*,d^*,\eta ^*\right) \) and \(\left( c^{\epsilon },w^{\epsilon },p^{\epsilon },q^{\epsilon },d^{\epsilon },\eta ^{\epsilon }\right) \) be the solutions of (31)–(41) such that in (33) and (36) \(\overline{c}=0\) and \(\overline{w}=0\), respectively, corresponding to the controls \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\) and\((u_1^{\epsilon },u_2^{\epsilon },{\overline{c}}^\epsilon ,{\overline{w}}^\epsilon ) =(u_1^*+\epsilon u_1^0,u_2^*+\epsilon u_2^0,{\overline{c}}^*+\epsilon {\overline{c}}_0,{\overline{w}}^*+\epsilon {\overline{w}}_0) \in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\), respectively, where \(\mathcal {C}_\mathrm{{ad}}\), \(\mathcal {W}_\mathrm{{ad}}\), \(\mathcal {C}^1_\mathrm{{ad}}\) and \(\mathcal {W}^1_\mathrm{{ad}}\) are defined in (45)–(48) and \(\epsilon \) is a positive constant. Also assume that
$$\begin{aligned} c^{\epsilon }_1= & {} \dfrac{c^{\epsilon }-c^*}{\epsilon },~w^{\epsilon }_1 =\dfrac{w^{\epsilon }-w^*}{\epsilon }, ~p^{\epsilon }_1=\dfrac{p^{\epsilon }-p^*}{\epsilon },~q^{\epsilon }_1 =\dfrac{q^{\epsilon }-q^*}{\epsilon },\\ d^{\epsilon }_1= & {} \dfrac{d^{\epsilon }-d^*}{\epsilon },~ \eta ^{\epsilon }_1=\dfrac{\eta ^{\epsilon }-\eta ^*}{\epsilon }, \end{aligned}$$
and \(J_1(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)=\min \Big \{J_1(u_1,u_2,\overline{c},\overline{w}):(u_1,u_2,\overline{c},\overline{w})\in \mathcal {C}_\mathrm{{ad}}\times \mathcal {W}_\mathrm{{ad}}\times \mathcal {C}^1_\mathrm{{ad}}\times \mathcal {W}^1_\mathrm{{ad}}\Big \}.\) Therefore, we have
$$\begin{aligned}&\dfrac{J_1(u_1^{\epsilon },u_2^{\epsilon },{\overline{c}}^\epsilon , {\overline{w}}^\epsilon )-J_1(u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)}{\epsilon } =\Big (\int _0^1\int _0^T\rho ^2\Big (\lambda _1(p^*+p^{\epsilon })p^{\epsilon }_1\nonumber \\&\quad +\lambda _2(q^*+q^{\epsilon })q^{\epsilon }_1 +(u_1^*+u_1^{\epsilon }-2r_1^*)u_1^0 +(u_2^*+u_2^{\epsilon }-2r_2^*)u_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau \nonumber \\&\quad +\int _0^T({\overline{c}}^*+{\overline{c}}^\epsilon -2r_3^*){\overline{c}}_0 +({\overline{w}}^*+{\overline{w}}^\epsilon -2r_4^*){\overline{w}}_0{\text{ d }}\tau \Big )\ge 0, \end{aligned}$$
(90)
where \(\left( c^{\epsilon }_1,w^{\epsilon }_1,p^{\epsilon }_1,q^{\epsilon }_1,d^{\epsilon }_1,\eta ^{\epsilon }_1\right) \) is the solution of (72)–(82) such that in (74) and (77), \(\overline{c}_0=0\) and \(\overline{w}_0=0\), respectively, also in (73) and (76), \(\overline{c}_0=\overline{c}_0(\tau )\) and \(\overline{w}_0=\overline{w}_0(\tau )\), respectively. Therefore, using (49)–(59), assumption A and Theorems A.4 and A.5, one can deduce that
$$\begin{aligned}&\int _0^T\int _0^1\rho ^2 \left( c^\epsilon _1\dfrac{\partial z_c}{\partial \tau }+z_c\dfrac{\partial c^\epsilon _1}{\partial \tau }+w^\epsilon _1 \dfrac{\partial z_w}{\partial \tau }+z_w\dfrac{\partial w^\epsilon _1}{\partial \tau } +p^\epsilon _1\dfrac{\partial z_p}{\partial \tau }+z_p\dfrac{\partial p^\epsilon _1}{\partial \tau }+q^\epsilon _1\dfrac{\partial z_q}{\partial \tau }\right. \\&\left. \quad +z_q\dfrac{\partial q^\epsilon _1}{\partial \tau }+d^\epsilon _1\dfrac{\partial z_d}{\partial \tau }+z_d\dfrac{\partial d^\epsilon _1}{\partial \tau }\right) {\text{ d }}\rho {\text{ d }}\tau +\int _0^T\left( \eta ^\epsilon _1\dfrac{d z_\eta }{d \tau }+z_\eta \dfrac{d \eta ^\epsilon _1}{d \tau }\right) {\text{ d }}\tau \\&\quad = -\int _0^T\int _0^1\rho ^2\Big (\lambda _1p^*p^\epsilon _1 +\lambda _2q^*q^\epsilon _1-z_cu_1^0 - z_wu_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau +\varpi (\epsilon ,\rho , T)\\&\qquad -\int _0^TD_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )\overline{c}_0 +D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )\overline{w}_0{\text{ d }}\tau , \end{aligned}$$
where \(\displaystyle {\lim _{\epsilon \rightarrow 0}}\varpi (\epsilon ,\rho , T)=0\). Thus, we arrive at
$$\begin{aligned}&\int _0^T\int _0^1\rho ^2\Big (\lambda _1p^*p^\epsilon _1 +\lambda _2q^*q^\epsilon _1-z_cu_1^0- z_wu_2^0\Big ){\text{ d }}\rho {\text{ d }}\tau -\varpi (\epsilon ,\rho , T)\\&\quad +\int _0^TD_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )\overline{c}_0 +D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau ) \overline{w}_0{\text{ d }}\tau = -\int _0^T\int _0^1\rho ^2\left( \dfrac{\partial z_cc^\epsilon _1}{\partial \tau }+\dfrac{\partial z_ww^\epsilon _1}{\partial \tau }\right. \\&\quad \left. +\dfrac{\partial z_pp^\epsilon _1}{\partial \tau }+\dfrac{\partial z_qq^\epsilon _1}{\partial \tau }+\dfrac{\partial z_dd^\epsilon _1}{\partial \tau }\right) {\text{ d }}\rho {\text{ d }}\tau -\int _0^T\dfrac{{\text{ d }} z_\eta \eta ^\epsilon _1}{{\text{ d }} \tau } {\text{ d }}\tau =0. \end{aligned}$$
So using (90) we get
$$\begin{aligned}&\Big (\int _0^1\int _0^T\rho ^2\left( ( z_c+u_1^*-r_1^*)u_1^0 +( z_w+u_2^*-r_2^*)u_2^0\right) {\text{ d }}\rho {\text{ d }}\tau \\&\quad +\int _0^T\left( \overline{c}^*-r_3^*-\left( D_1\dfrac{\partial z_c}{\partial \rho } (1,\tau )\right) \right) {\overline{c}}_0(\tau ){\text{ d }}\tau + \int _0^T\left( \overline{w}^*-r_4^*\right. \\&\quad \left. -\left( D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )\right) \right) {\overline{w}}_0(\tau ){\text{ d }}\tau \Big ) \ge 0. \end{aligned}$$
Therefore, from tangent-normal cone techniques [21] and (45)–(48), \((u_1^*,u_2^*,{\overline{c}}^*,{\overline{w}}^*)\) is as follows:
$$\begin{aligned}&u_1^*=\mathcal {F}_1(-z_c+r_1^*),~u_2^*=\mathcal {F}_2(-z_w+r_2^*),~ {\overline{c}}^*=\mathcal {F}_3\left( D_1\dfrac{\partial z_c}{\partial \rho }(1,\tau )+r_3^*\right) ,\\&{\overline{w}}^* =\mathcal {F}_4\left( D_2\dfrac{\partial z_w}{\partial \rho }(1,\tau )+r_4^*\right) . \end{aligned}$$
Finally, in a similar manner to the proof of Theorem 2.2, the desired result is obtained. \(\square \)