Skip to main content
Log in

Robust Averaged Control of Vibrations for the Bernoulli–Euler Beam Equation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper proposes an approach for the robust averaged control of random vibrations for the Bernoulli–Euler beam equation under uncertainty in the flexural stiffness and in the initial conditions. The problem is formulated in the framework of optimal control theory and provides a functional setting, which is so general as to include different types of random variables and second-order random fields as sources of uncertainty. The second-order statistical moment of the random system response at the control time is incorporated in the cost functional as a measure of robustness. The numerical resolution method combines a classical descent method with an adaptive anisotropic stochastic collocation method for the numerical approximation of the statistics of interest. The direct and adjoint stochastic systems are uncoupled, which permits to exploit parallel computing architectures to solve the set of deterministic problem that arise from the stochastic collocation method. As a result, problems with a relative large number of random variables can be solved with a reasonable computational cost. Two numerical experiments illustrate both the performance of the proposed method and the significant differences that may occur when uncertainty is incorporated in this type of control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zuazua, E.: Averaged control. Automatica 50, 3077–3087 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lazar, M., Zuazua, E.: Averaged control and observation of parameter-depending wave equations. C. R. Acad. Sci. Paris Ser. I 352, 497–502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lohéac, J., Zuazua, E.: Averaged controllability of parameter dependent wave equations. J. Differ. Eqs. 262(3), 1540–1574 (2017)

    Article  MATH  Google Scholar 

  4. Lü, Q., Zuazua, E.: Averaged controllability for random evolution partial differential equations. J. Math. Pures Appl. 105(3), 367–414 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lazar, M., Zuazua, E.: Greedy controllability of finite dimensional linear systems. Automatica 74, 327–340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cîndea, N., Micu, S., Tucsnak, M.: An approximation method for exact controls of vibrating systems. SIAM J. Control Optim. 49(3), 1283–1305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method. Masson, Paris (1994)

    MATH  Google Scholar 

  8. Komornik, V., Loreti, P.: Fourier Series in Control Theory. Springer, New York (2005)

    MATH  Google Scholar 

  9. Lagnese, J.E., Lions, J.L.: Modelling, Analysis and Control of Thin Plates. Masson, Paris (1988)

    MATH  Google Scholar 

  10. Boyce, W.E., Goodwin, B.E.: Random transverse vibrations of elastic beams. J. Soc. Ind. Appl. Mat. 12(3), 613–629 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements. A Spectral Approach. Dover, Mineola (2003)

    MATH  Google Scholar 

  12. Huang, B., Li, Q.S., Tuan, A.Y., Zhu, H.: Recursive approach for random response analysis using non-orthogonal polynomial expansion. Comput. Mech. 44, 309–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Manohar, C.S., Adhikari, S.: Dynamic stiffness of randomly parametered beams. Prob. Eng. Mech. 13(1), 39–51 (1998)

    Article  Google Scholar 

  14. Halmos, P.: Measure Theory. Graduate Texts in Mathematics, vol. 18. Springer, New York (1970)

    Google Scholar 

  15. Light, W.A., Cheney, E.W.: Approximation Theory in Tensor Product Spaces. Lecture Notes in Mathematics, vol. 1169. Springer, New York (1985)

    Book  MATH  Google Scholar 

  16. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Book  MATH  Google Scholar 

  17. Martínez-Frutos, J., Kessler, M., Periago, F.: Robust optimal shape design for an elliptic PDE with uncertainty in its input data. ESAIM COCV 21, 901–923 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rangavajhala, S., Mullur, A.A., Messac, A.: Equality constraints in multiobjective robust design optimization: decision making problem. J. Optim. Theory Appl. 140(2), 315–337 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin (2009)

    MATH  Google Scholar 

  20. Rosseel, E., Wells, G.N.: Optimal control with stochastic PDE constraints and uncertain controls. Comput. Methods Appl. Mech. Eng. 213(216), 152–167 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York (2014)

  22. Hughes, T.J.R.: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Upper Saddle River (1987)

    MATH  Google Scholar 

  23. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Smolyak, S.: Quadrature and interpolation formulas for tensor product of certain classes of functions. Dokl. Akad. Nauk. SSSR 4, 240–243 (1963)

    MATH  Google Scholar 

  26. Smith, R.C.: Uncertainty Quantification. Theory, Implementation and Applications. SIAM Computational Science & Engineering, Philadelphia (2014)

    MATH  Google Scholar 

  27. Jaffard, S.: Contr\(\hat{o}\)le interne exact des vibrations d’une plaque rectangulaire. Port. Math. 47(4), 423–429 (1990)

    MATH  Google Scholar 

  28. Zuazua, E.: Stable observation of additive superpositions of partial differential equations. Syst. Control Lett. 93, 21–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lohéac, J., Zuazua, E.: From averaged to simultaneous controllability of parameter dependent finite-dimensional systems. Ann. Fac. Sci. Toulouse Math. (6) 25(4), 785–828 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Work supported by Projects MTM2013-47053 and DPI2016-77538-R from Ministerio de Economía y Competitividad (Spain) and 19274/PI/14 from Fundación Séneca (Agencia de Ciencia y Tecnología de la Región de Murcia (Spain)). The first author was also supported by a Ph.D. Grant from Fundación Séneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Periago.

Additional information

Communicated by Enrique Zuazua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín, F.J., Martínez-Frutos, J. & Periago, F. Robust Averaged Control of Vibrations for the Bernoulli–Euler Beam Equation. J Optim Theory Appl 174, 428–454 (2017). https://doi.org/10.1007/s10957-017-1128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1128-x

Keywords

Mathematics Subject Classification

Navigation