Abstract
Three hybrid methods for solving unconstrained optimization problems are introduced. These methods are defined using proper combinations of the search directions and included parameters in conjugate gradient and quasi-Newton methods. The convergence of proposed methods with the underlying backtracking line search is analyzed for general objective functions and particularly for uniformly convex objective functions. Numerical experiments show the superiority of the proposed methods with respect to some existing methods in view of the Dolan and Moré’s performance profile.




Similar content being viewed by others
References
Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)
Fletcher, R.: Practical Methods of Optimization. Unconstrained Optimization, vol. 1. Wiley, New York (1987)
Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)
Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)
Polak, E., Ribiere, G.: Note sur la convergence des mthodes de directions conjuguées. Rev. Francaise Imformat Recherche Opertionelle 16, 35–43 (1969)
Polyak, B.T.: The conjugate gradient method in extreme problems. U.S.S.R. Comput. Math. Math. Phys. 9, 94–112 (1969)
Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory Appl. 69(1), 129–137 (1991)
Yang, X., Luo, Z., Dai, X.: A global convergence of LS-CD hybrid conjugate gradient method. In: Advances in Numerical Analysis 2013. Hindawi Publishing Corporation, Article ID 517452, 5 pp. (2013)
Dai, Y.H., Liao, L.Z.: New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43(1), 87–101 (2001)
Zheng, Y., Zheng, B.: Two new Dai–Liao-type conjugate gradient methods for unconstrained optimization problems. J. Optim. Theory Appl. 175, 502–509 (2017)
Andrei, N.: An acceleration of gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algorithms 42, 63–73 (2006)
Stanimirović, P.S., Miladinović, M.B.: Accelerated gradient descent methods with line search. Numer. Algorithms 54, 503–520 (2010)
Touati-Ahmed, D., Storey, C.: Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl. 64(2), 379–397 (1990)
Zhang, L., Zhou, W.: Two descent hybrid conjugate gradient methods for optimization. J. Comput. Appl. Math. 216, 251–264 (2008)
Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2(1), 21–42 (1992)
Dai, Y.H., Yuan, Y.: An efficient hybrid conjugate gradient method for unconstrained optimization. Ann. Oper. Res. 103, 33–47 (2001)
Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)
Zhang, L., Zhou, W.J., Li, D.H.: A descent modified Polak–Ribiére–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)
Zhang, L., Zhou, W.J., Li, D.H.: Global convergence of a modified Fletcher–Reeves conjugate method with Armijo-type line search. Numer. Math. 104, 561–572 (2006)
Zhang, L.: Nonlinear Conjugate Gradient Methods for Optimization Problems. Ph.D. Thesis, College of Mathematics and Econometrics, Hunan University, Changsha, China (2006)
Ibrahim, M.A.H., Mamat, M., Leong, W.J.: The hybrid BFGS-CG method in solving unconstrained optimization problems. In: Abstract and Applied Analysis 2014. Hindawi Publishing Corporation. Article ID 507102, 6 pp. (2014)
Zoutendijk, G.: Nonlinear programming, computational methods. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 37–86. North-Holland, Amsterdam (1970)
Cheng, W.: A two-term PRP-based descent method. Numer. Funct. Anal. Optim. 28(11–12), 1217–1230 (2007)
Luo, Y.Z., Tang, G.J., Zhou, L.N.: Hybrid approach for solving systems of nonlinear equations using chaos optimization and quasi-Newton method. Appl. Soft Comput. 8(2), 1068–1073 (2008)
Han, L., Neumann, M.: Combining quasi-Newton and Cauchy directions. Int. J. Appl. Math. 12(2), 167–191 (2003)
Baluch, B., Salleh, Z., Alhawarat, A., Roslan, U.A.M.: A new modified three-term conjugate gradient method with sufficient descent property and its global convergence. J. Math. 2017, Article ID 2715854, 12 pp. (2017)
Khanaiah, Z., Hmod, G.: Novel hybrid algorithm in solving unconstrained optimizations problems. Int. J. Novel Res. Phys. Chem. Math. 4(3), 36–42 (2017)
Osman, W.F.H.W., Ibrahim, M.A.H., Mamat, M.: Hybrid DFP-CG method for solving unconstrained optimization problems. J. Phys. Conf. Ser. 890(2017), 012033 (2017)
Byrd, R.H., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26(3), 727–739 (1989)
Andrei, N.: An Unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–161 (2008)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Acknowledgements
The first author gratefully acknowledge support from the Research Project 174013 of the Serbian Ministry of Science.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Ilio Galligani.
Rights and permissions
About this article
Cite this article
Stanimirović, P.S., Ivanov, B., Djordjević, S. et al. New Hybrid Conjugate Gradient and Broyden–Fletcher–Goldfarb–Shanno Conjugate Gradient Methods. J Optim Theory Appl 178, 860–884 (2018). https://doi.org/10.1007/s10957-018-1324-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-018-1324-3
Keywords
- Global convergence
- Backtracking line search
- Unconstrained optimization
- Conjugate gradient methods
- Quasi-Newton methods