Skip to main content
Log in

Robust Time-Optimal Guidance in a Partially Uncertain Time-Varying Flow-Field

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of guiding an aerial or aquatic vehicle to a fixed target point in a partially uncertain flow-field. We assume that the motion of the vehicle is described by a point-mass linear kinematic model. In addition, the velocity of the flow-field, which is taken to be time varying, can be decomposed into two components: one which is known a priori and another one which is uncertain and only a bound on its magnitude is known. We show that the guidance problem can be reformulated as an equivalent pursuit evasion game with time-varying affine dynamics. To solve the latter game, we propose an extension of a specialized solution approach, which transforms the pursuit–evasion game (whose terminal time is free) via a special state transformation into a family of games with fixed terminal time. In addition, we provide a simple method to visualize the level sets of the value function of the game, along with the corresponding reachable sets. Furthermore, we compare our conservative game-theoretic solution with a pure optimal control solution, for the special case in which the flow-field is perfectly known a priori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Dover Publications, Mineola (1999)

    MATH  Google Scholar 

  2. Pontryagin, L.: The theory of differential games. Russ. Math. Surv. 21(4), 193–246 (1966)

    Article  MathSciNet  Google Scholar 

  3. Basar, T., Olsder, G.: Dynamic Noncooperative Game Theory. Academic Press Inc., New York (1982)

    MATH  Google Scholar 

  4. Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)

    Google Scholar 

  5. Hàjek, O.: Pursuit Games: An Introduction to the Theory and Applications of Differential Games of Pursuit and Evasion, 2nd edn. Dover Publications, Mineola (2008)

    MATH  Google Scholar 

  6. Pachter, M., Yavin, Y.: Simple-motion pursuit–evasion differential games, part 1: stroboscopic strategies in collision-course guidance and proportional navigation. J. Optim. Theory Appl. 51(1), 95–127 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernhard, P.: Linear-quadratic, two-person, zero-sum differential games: necessary and sufficient conditions. J. Optim. Theory Appl. 27(1), 51–69 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amato, F., Mattei, M., Pironti, A.: Guaranteeing cost strategies for linear quadratic differential games under uncertain dynamics. Automatica 38(3), 507–515 (2002)

    Article  MATH  Google Scholar 

  9. Bernhard, P.: Linear pursuit–evasion games and the isotropic rocket. Tech. rep, DTIC Document (1970)

  10. Perelman, A., Shima, T., Rusnak, I.: Cooperative differential games strategies for active aircraft protection from a homing missile. J. Guid. Control Dyn. 34(3), 761–773 (2011)

    Article  Google Scholar 

  11. Gutman, S., Esh, M., Gefen, M.: Simple linear pursuit–evasion games. Comput. Math. Appl. 13(1), 83–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Breitner, M.H., Pesch, H.J.: Reentry trajectory optimization under atmospheric uncertainty as a differential game. In: T. Basar et al. (eds.) Advances in Dynamic Games and Applications, pp. 70–86. Springer, Berlin (1994)

  13. Tomlin, C., Pappas, G., Sastry, S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Trottemant, E., Scherer, C., Weiss, M., Vermeulen, A.: Robust minimax strategies for missile guidance design. In: AIAA Guidance, Navigation and Control Conference and Exhibit. AIAA, Honolulu, HI (2008)

  15. Patsko, V., Botkin, N., Kein, V., Turova, V., Zarkh, M.: Control of an aircraft landing in windshear. J. Optim. Theory Appl. 83(2), 237–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhao, Y., Bryson, A.: Optimal paths through downbursts. J. Guid. Control Dyn. 13(5), 813–818 (1990)

    Article  Google Scholar 

  17. Bulirsch, R., Montrone, F., Pesch, H.J.: Abort landing in the presence of windshear as a minimax optimal control problem, part 1: necessary conditions. J. Optim. Theory Appl. 70(1), 1–23 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. McGee, T.G., Hedrick, J.K.: Optimal path planning with a kinematic airplane model. J. Guid. Control Dyn. 30(2), 629–633 (2007)

    Article  Google Scholar 

  19. Techy, L., Woolsey, C.A.: Minimum-time path planning for unmanned aerial vehicles in steady uniform winds. J. Guid. Control Dyn. 32(6), 1736–1746 (2009)

    Article  Google Scholar 

  20. Bakolas, E., Tsiotras, P.: Optimal synthesis of the Zermelo–Markov–Dubins problem in a constant drift field. J. Optim. Theory Appl. 156(2), 469–492 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Anderson, R.P., Bakolas, E., Milutinović, D., Tsiotras, P.: Optimal feedback guidance of a small aerial vehicle in a stochastic wind. J. Guid. Control Dyn. 36(4), 975–985 (2013)

    Article  Google Scholar 

  22. Bakolas, E.: Optimal guidance of the isotropic rocket in the presence of wind. J. Optim. Theory Appl. 162(3), 954–974 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bakolas, E., Marchidan, A.: Time-optimal control of a self-propelled particle in a spatiotemporal flow field. Int. J. Control 89(3), 623–634 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chilan, C.M., Conway, B.A.: A reachable set analysis method for generating near-optimal trajectories of constrained multiphase systems. J. Optim. Theory Appl. 167(1), 161–194 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, W., Tsiotras, P., Lolla, T., Subramani, D.N., Lermusiaux, P.F.: Multiple-pursuer/one-evader pursuit–evasion game in dynamic flowfields. J. Guid. Control Dyn. 40(7), 1627–1637 (2017)

    Article  Google Scholar 

  26. Selvakumar, J., Bakolas, E.: Optimal guidance of the isotropic rocket in a partially uncertain flow field. In: Control Conference (ECC), 2015 European, pp. 3328–3333 (2015)

  27. Bakolas, E.: Feedback guidance in uncertain spatiotemporal wind using a vector backstepping algorithm. J. Guid. Control Dyn. 38(4), 631–642 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF under Grant 1562339. The first author also acknowledges support from the Zonta International Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathios Bakolas.

Additional information

Communicated by Bruce. A. Conway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, J., Bakolas, E. Robust Time-Optimal Guidance in a Partially Uncertain Time-Varying Flow-Field. J Optim Theory Appl 179, 240–264 (2018). https://doi.org/10.1007/s10957-018-1326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1326-1

Keywords

Mathematics Subject Classification

Navigation