Skip to main content
Log in

Topological Derivatives of Shape Functionals. Part III: Second-Order Method and Applications

  • Invited Paper
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The framework of asymptotic analysis in singularly perturbed geometrical domains presented in the first part of this series of review papers can be employed to produce two-term asymptotic expansions for a class of shape functionals. In Part II (Novotny et al. in J Optim Theory Appl 180(3):1–30, 2019), one-term expansions of functionals are required for algorithms of shape-topological optimization. Such an approach corresponds to the simple gradient method in shape optimization. The Newton method of shape optimization can be replaced, for shape-topology optimization, by two-term expansions of shape functionals. Thus, the resulting approximations are more precise and the associated numerical methods are much more complex compared to one-term expansion topological derivative algorithms. In particular, numerical algorithms associated with first-order topological derivatives of shape functionals have been presented in Part II (Novotny et al. 2019), together with an account of their applications currently found in the literature, with emphasis on shape and topology optimization. In this last part of the review, second-order topological derivatives are introduced. Second-order algorithms of shape-topological optimization are used for numerical solution of representative examples of inverse reconstruction problems. The main feature of these algorithms is that the method is non-iterative and thus very robust with respect to noisy data as well as independent of initial guesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part II: first order method and applications. J. Optim. Theory Appl. 180(3), 1–28 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part I: theory in singularly perturbed geometrical domains. J. Optim. Theory Appl. 180(2), 1–33 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Faria, J.R., Novotny, A.A.: On the second order topologial asymptotic expansion. Struct. Multidiscipl. Optim. 39(6), 547–555 (2009)

    Article  MATH  Google Scholar 

  4. Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  5. Bonnet, M., Cornaggia, R.: Higher order topological derivatives for three-dimensional anisotropic elasticity. ESAIM Control Optim. Calc. Var. 51(6), 2069–2092 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Hintermüller, M., Laurain, A., Novotny, A.A.: Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 36(2), 235–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferreira, A., Novotny, A.A.: A new non-iterative reconstruction method for the electrical impedance tomography problem. Inverse Probl. 33(3), 035005 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canelas, A., Laurain, A., Novotny, A.A.: A new reconstruction method for the inverse source problem from partial boundary measurements. Inverse Probl. 31(7), 075009 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Isakov, V.: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol. 127. Springer, New York (2006)

    MATH  Google Scholar 

  10. Fernandez, L., Novotny, A.A., Prakash, R.: A non-iterative reconstruction method for an inverse potential problem modeled by a modified Helmholtz equation. Numer. Funct. Anal. Optim. 39(9), 937–966 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Canelas, A., Laurain, A., Novotny, A.A.: A new reconstruction method for the inverse potential problem. J. Comput. Phys. 268, 417–431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Machado, T.J., Angelo, J.S., Novotny, A.A.: A new one-shot pointwise source reconstruction method. Math. Methods Appl. Sci. 40(15), 1367–1381 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rocha, S.S., Novotny, A.A.: Obstacles reconstruction from partial boundary measurements based on the topological derivative concept. Struct. Multidiscip. Optim. 55(6), 2131–2141 (2017)

    Article  MathSciNet  Google Scholar 

  14. Burger, M.: A level set method for inverse problems. Inverse Probl. 17, 1327–1356 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hintermüller, M., Laurain, A.: Electrical impedance tomography: from topology to shape. Control Cybern. 37(4), 913–933 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Isakov, V., Leung, S., Qian, J.: A fast local level set method for inverse gravimetry. Commun. Comput. Phys. 10(4), 1044–1070 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leitão, A., Baumeister, J.: Topics in Inverse Problems. IMPA Mathematical Publications, Rio de Janeiro (2005)

    MATH  Google Scholar 

  18. Tricarico, P.: Global gravity inversion of bodies with arbitrary shape. Geophys. J. Int. 195(1), 260–275 (2013)

    Article  Google Scholar 

  19. Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–138 (2006). (Reprinted from the Seminar on Numerical Analysis and its Applications to Continuum Physics, Sociedade Brasileira de Matemática, Rio de Janeiro, 1980)

    MathSciNet  MATH  Google Scholar 

  20. Amstutz, S., Horchani, I., Masmoudi, M.: Crack detection by the topological gradient method. Control Cybern. 34(1), 81–101 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Carpio, A., Rapún, M.L.: Solving inhomogeneous inverse problems by topological derivative methods. Inverse Probl. 24(4), 045,014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Caubet, F., Conca, C., Godoy, M.: On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives. Inverse Probl. Imaging 10(2), 327–367 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guzina, B.B., Bonnet, M.: Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics. Inverse Probl. 22(5), 1761–1785 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jackowska-Strumiłło, L., Sokołowski, J., Żochowski, A., Henrot, A.: On numerical solution of shape inverse problems. Comput. Optim. Appl. 23(2), 231–255 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laurain, A., Hintermüller, M., Freiberger, M., Scharfetter, H.: Topological sensitivity analysis in fluorescence optical tomography. Inverse Probl. 29(2), 025,003,30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Masmoudi, M., Pommier, J., Samet, B.: The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Probl. 21(2), 547–564 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ammari, H., Kang, H.: High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of inhomogeneities of small diameter. SIAM J. Math. Anal. 34(5), 1152–1166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brühl, M., Hanke, M., Vogelius, M.S.: A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93(4), 635–654 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Capdeboscq, Y., Vogelius, M.S.: A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37(1), 159–173 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Capdeboscq, Y., Vogelius, M.S.: Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. Math. Model. Numer. Anal. 37(2), 227–240 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cedio-Fengya, D.J., Moskow, S., Vogelius, M.S.: Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Probl. 14(3), 553–595 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Friedman, A., Vogelius, M.: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105(4), 299–326 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ammari, H., Bretin, E., Garnier, J., Jing, W., Kang, H., Wahab, A.: Localization, stability, and resolution of topological derivative based imaging functionals in elasticity. SIAM J. Imaging Sci. 6(4), 2174–2212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ammari, H., Calmon, P., Iakovleva, E.: Direct elastic imaging of a small inclusion. SIAM J. Imaging Sci. 1, 169–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lectures Notes in Mathematics, vol. 1846. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  36. Bonnet, M.: Higher-order topological sensitivity for 2-D potential problems. Int. J. Solids Struct. 46(11–12), 2275–2292 (2009)

    Article  MATH  Google Scholar 

  37. Silva, M., Matalon, M., Tortorelli, D.A.: Higher order topological derivatives in elasticity. Int. J. Solids Struct. 47(22–23), 3053–3066 (2010)

    Article  MATH  Google Scholar 

  38. Isakov, V.: Inverse Problems for Partial Diferential Equations. Springer, New York (1998)

    Book  MATH  Google Scholar 

  39. Isakov, V.: Inverse Source Problems. American Mathematical Society, Providence, RI (1990)

    Book  MATH  Google Scholar 

  40. Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements. Commun. Pure Appl. Math. 37(3), 289–298 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Canelas, A., Novotny, A.A., Roche, J.R.: A new method for inverse electromagnetic casting problems based on the topological derivative. J. Comput. Phys. 230, 3570–3588 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Canelas, A., Novotny, A.A., Roche, J.R.: Topology design of inductors in electromagnetic casting using level-sets and second order topological derivatives. Struct. Multidiscip. Optim. 50(6), 1151–1163 (2014)

    Article  MathSciNet  Google Scholar 

  43. Fernandez, L., Novotny, A.A., Prakash, R.: Topological asymptotic analysis of an optimal control problem modeled by a coupled system. Asympt. Anal. 109(1–2), 1–26 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by CNPq (Brazilian Research Council), CAPES (Brazilian Higher Education Staff Training Agency) and FAPERJ (Research Foundation of the State of Rio de Janeiro). The support is gratefully acknowledged. We also thank Habib Ammari, Alfredo Canelas, Michael Hintermüller, Hyeonbae Kang, Antoine Laurain, Jairo Faria, Ravi Prakash and the former students Lucas Fernandez, Andrey Ferreira, Thiago Machado and Suelen Rocha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sokołowski.

Additional information

Marc Bonnet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novotny, A.A., Sokołowski, J. & Żochowski, A. Topological Derivatives of Shape Functionals. Part III: Second-Order Method and Applications. J Optim Theory Appl 181, 1–22 (2019). https://doi.org/10.1007/s10957-018-1420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1420-4

Keywords

Mathematics Subject Classification

Navigation