Skip to main content

Advertisement

Log in

Further on Inner Regularizations in Bilevel Optimization

  • Technical Note
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A crucial difficulty in pessimistic bilevel optimization is the possible lack of existence of exact solutions since marginal functions of the sup type may fail to be lower semicontinuous. So, to overcome this drawback, we have introduced, in Lignola and Morgan (J Optim Theory Appl 173(1):183–202, 2017), suitable inner regularizations of the lower level optimization problem together with relative viscosity solutions for the pessimistic bilevel problem. Here, we continue this research by considering new inner regularizations of the lower level optimization problem, which not necessarily satisfy the constraints but that are close to them, and by deriving an existence result of related viscosity solutions to the pessimistic bilevel problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lignola, M.B., Morgan, J.: Inner regularizations and viscosity solutions for pessimistic bilevel optimization problems. J. Optim. Theory Appl. 173(1), 183–202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonnel, H., Morgan, J.: Semivectorial bilevel convex optimal control problems: existence results. SIAM J. Control Optim. 50(6), 3224–3241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wiesemann, W., Tsoukalas, A., Kleniati, P.M., Rustem, B.: Pessimistic bilevel optimization. SIAM J. Optim. 23(1), 353–380 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dempe, S., Mordukhovich, B.S., Zemkoho, A.B.: Necessary optimality conditions in pessimistic bilevel programming. Optimization 63, 505–523 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel Programming Problems. Theory, Algorithms and Applications to Energy Networks. Springer, Berlin (2015)

    MATH  Google Scholar 

  6. Zemkoho, A.B.: Solving Ill-posed bilevel programs. Set-Valued Var. Anal. 24, 423–448 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lignola, M.B., Morgan, J.: Asymptotic behavior of semi-quasivariational optimistic bilevel problems in Banach spaces. J. Math. Anal. Appl. 424, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lignola, M.B., Morgan, J.: Semicontinuity and episemicontinuity: equivalence and applications. Boll. Unione Mat. Ital. 8–B, 1–16 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Lignola, M.B., Morgan, J.: Stability in regularized quasi-variational settings. J. Convex Anal. 19, 1091–1107 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Morgan.

Additional information

Communicated by Alexander Mitsos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lignola, M.B., Morgan, J. Further on Inner Regularizations in Bilevel Optimization. J Optim Theory Appl 180, 1087–1097 (2019). https://doi.org/10.1007/s10957-018-1438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1438-7

Keywords

Mathematics Subject Classification