Skip to main content
Log in

On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The property of continuous differentiability with Lipschitz derivative of the square distance function is known to be a characterization of prox-regular sets. We show in this paper that the property of higher-order continuous differentiability with locally uniformly continuous last derivative of the square distance function near a point of a set characterizes, in Hilbert spaces, that the set is a submanifold with the same differentiability property near the point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 99–182. International Press, Somerville (2010)

    Google Scholar 

  2. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352(11), 5231–5249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clarke, F.H., Stern, R.J., Wolenski, P.R.: Proximal smoothness and the lower-\(C^2\) property. J. Convex Anal. 2(1–2), 117–144 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Ivanov, G.E.: Weak convexity in the senses of Vial and Efimov-Stechkin. Izv. Math. 69, 1113–1135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cornet, B.: Existence of slow solutions for a class of differential inclusions. J. Math. Anal. Appl. 96(1), 130–147 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Serea, O.S.: On reflecting boundary problem for optimal control. SIAM J. Control Optim. 42(2), 559–575 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, T.H., Mordukhovich, B.S.: Optimal control of a nonconvex perturbed sweeping process. J. Differ. Equ. 266(2–3), 1003–1050 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33(1), 216–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Poly, J.B.: Fonction distance et sigularités. Bull. Sci. Math. (2me Série) 108(2), 187–195 (1984)

    MATH  Google Scholar 

  11. Correa, R., Salas, D., Thibault, L.: Smoothness of the metric projection onto nonconvex bodies in Hilbert spaces. J. Math. Anal. Appl. 457(2), 1307–1322 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Salas, D., Thibault, L.: Characterizations of nonconvex sets with smooth boundary in terms of the metric projection in Hilbert spaces (2018). (pre-print)

  13. Holmes, R.B.: Smoothness of certain metric projections on Hilbert space. Trans. Am. Math. Soc. 184, 87–100 (1973)

    Article  MathSciNet  Google Scholar 

  14. Fitzpatrick, S., Phelps, R.R.: Differentiability of the metric projection in Hilbert space. Trans. Am. Math. Soc. 170(2), 483–501 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abraham, R., Marsden, J., Ratiu, T.: Manifolds, Tensor Analysis and Applications. Springer, New York (2001)

    MATH  Google Scholar 

  16. Field, M.: Differential Calculus and Its Applications. Dover Publications, Mineola (2012)

    Google Scholar 

  17. Izzo, A.J.: Locally uniformly continuous functions. Proc. Am. Math. Soc. 122(4), 1095–1100 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nash, J.: Real algebraic manifolds. Ann. Math. Second Ser. 56(3), 405–421 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zarantonello, E.: Projections on convex sets in Hilbert space and spectral theory. Contributions to nonlinear analysis. In: Proceedings of a Symposium Conducted by the Mathematics Research Center, pp. 237–424. The University of Wisconsin-Madison (1971)

  20. Canino, A.: On \(p\)-convex sets and geodesics. J. Differ. Equ. 75(1), 118–157 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shapiro, A.: Existence and differentiability of metric projections in Hilbert spaces. SIAM J. Optim. 4(1), 130–141 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Asplund, E.: Fréchet differentiability of convex functions. Acta Math. 121, 31–47 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  23. Salas, D., Thibault, L., Vilches, E.: On the smoothness of solutions to projected differential equations. Discrete Contin. Dyn. Syst. Ser. A 39(4), 2255–2283 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ioffe, A.D.: An invitation to tame optimization. SIAM J. Optim. 19(4), 1894–1917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brokate, M., Krejčí, P.: Optimal control of ode systems involving a rate independent variational inequality. Discrete Contin. Dyn. Syst. B 18, 331–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Arroud, C., Colombo, G.: A maximum principle for the controlled sweeping process. Set-Valued Var. Anal. 26(3), 607–629 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Thibault.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas, D., Thibault, L. On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces. J Optim Theory Appl 182, 189–210 (2019). https://doi.org/10.1007/s10957-019-01473-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01473-3

Keywords

Mathematics Subject Classification

Navigation