Skip to main content
Log in

An Insensitizing Control Problem for the Ginzburg–Landau Equation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of insensitizing controls for the nonlinear Ginzburg–Landau equation. Here, we have a partially unknown initial data, and the problem consists in finding controls such that a specific functional is insensitive for small perturbations of the initial data. In general, the problem of finding controls with this property is equivalent to prove a partial null controllability result for an optimality system of cascade type. The novelty here is that we consider functionals depending on the gradient of the state, which leads to a null controllability problem for a system with second-order coupling terms. To manage coupling terms of this order, we need a new Carleman estimate for the solutions of the corresponding adjoint system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lions, J.-L.: Quelques notions dans l’analyse et le contrôle de systèmes à données incompletes. In: Proceedings of the 11th Congress on Differential Equations and Applications/First Congress on Applied Mathematics (Spanish) (Málaga, 1989), pp. 43–54 (1990)

  2. Lions, J.-L.: Sentinelles pour les systèmes distribués à données incomplètes, vol. 21. Masson, Paris (1992)

    MATH  Google Scholar 

  3. Bodart, O., Fabre, C.: Controls insensitizing the norm of the solution of a semilinear heat-equation. J. Math. Anal. Appl. 195(3), 658–683 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Teresa, L.: Insensitizing controls for a semilinear heat equation: semilinear heat equation. Commun. Partial Differ. Equ. 25(1–2), 39–72 (2000)

    Article  MATH  Google Scholar 

  5. Bodart, O., González-Burgos, M., Pérez-García, R.: Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity. Commun. Partial Differ. Equ. 29(7–9), 1017–1050 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodart, O., González-Burgos, M., Pérez-García, R.: Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient. Nonlinear Anal. Theory Methods Appl. 5(5–6), 687–711 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Teresa, L., Zuazua, E.: Identification of the class of initial data for the insensitizing control of the heat equation. Commun. Pure Appl. Anal. 8(1), 457–471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guerrero, S.: Null controllability of some systems of two parabolic equations with one control force. SIAM J. Control Optim. 46(2), 379–394 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guerrero, S.: Controllability of systems of Stokes equations with one control force: existence of insensitizing controls. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 24(6), 1029–1054 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carreno, N., Guerrero, S., Gueye, M.: Insensitizing controls with two vanishing components for the three-dimensional Boussinesq system. ESAIM Control Optim. Calc. Var. 21(1), 73–100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gueye, M.: Insensitizing controls for the Navier–Stokes equations. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 30(5), 825–844 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carreño, N.: Insensitizing controls for the Boussinesq system with no control on the temperature equation. Adv. Differ. Equ. 22(3/4), 235–258 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Rosier, L., Zhang, B.-Y.: Null controllability of the complex Ginzburg–Landau equation. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 26(2), 649–673 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, M., Liu, X.: Insensitizing controls for a class of nonlinear Ginzburg–Landau equations. Sci. China Math. 57(12), 2635–2648 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fursikov, A.V., Imanuvilov, O.Y.: Controllability of Evolution Equations, Lecturer Notes Series, vol. 34. Seoul National University, Seoul (1996)

    MATH  Google Scholar 

  16. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Translated from the Russian by VM Volosov, Contemporary Soviet Mathematics Consultants Bureau, New York (1987)

  17. Fernandez-Cara, E.: Null controllability of the semilinear heat equation. ESAIM Control Optim. Calc. Var. 2, 87–103 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations, vol. 13. Oxford University Press on Demand, Oxford (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank professor Diego A. Souza, from Universidade Federal de Pernambuco (Brazil), to have participated in many discussions concerning the problems presented here, the authors are in debt for his support. The authors also thank the reviewers of this paper, to have raised many interesting questions and comments which certainly improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício Cardoso Santos.

Additional information

Enrique Zuazua.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: On the Existence of Solutions

Appendix: On the Existence of Solutions

We will show some results about the existence of solutions for system

$$\begin{aligned} \begin{array}{ll} y_{t} - (1+ia) \Delta y +Ry = F^0, &{} \ \text{ in } Q_T\text{, }\\ -z_{t} - (1-ia) \Delta z +Rz= \nabla \cdot ( \nabla y 1_{{\mathcal {O}}}) +F^1&{} \ \text{ in } Q_T\text{, }\\ y = z = 0 &{} \ \text{ on } \Sigma _T, \\ y|_{t =0} = y_0, z|_{t=T}=0 &{} \ \text{ in } \Omega , \end{array} \end{aligned}$$
(75)

where \((F^0,F^1)\) are given. The proofs in here can be adapted to prove existence of solutions for systems (5) and (7).

For \(a\in {\mathbb {R}}\), define the linear unbounded operators

$$\begin{aligned} \left\{ \begin{array}{l} D(L_0)=\{u\in H^1_0(\Omega ); \Delta u\in H^1_0(\Omega )\},\\ L_0u=(1+ia)\Delta u - R u \in H^{1}_0(\Omega ), \end{array}\right. \quad \hbox {and}\quad \left\{ \begin{array}{l} D(L_1)=H^1_0(\Omega ),\\ L_1u=(1-ia)\Delta u - R u \in H^{-1}(\Omega )\end{array}\right. \end{aligned}$$
(76)

Both operators are m-dissipative with dense domains; therefore, they generate the \(C_0\) semigroups of contractions \({\mathcal {T}}_0\) and \({\mathcal {T}}_1\), respectively.

Here, we will need once again the spaces

$$\begin{aligned}&Y_0= C([0,T]; D(L_0))\cap C^1([0,T]; H^1_0(\Omega ))\quad \hbox {and} \nonumber \\&Y_1=C([0,T]; D(L_1))\cap C^1([0,T]; H^{-1}(\Omega )). \end{aligned}$$
(77)

We start proving the existence of mild solutions for system (75).

Proposition A.1

(Mild Solutions) Assume that \(y_0 \in H^1_0(\Omega )\),

$$\begin{aligned} F^0\in L^2(0,T;H^1_0(\Omega ))\quad \hbox {and}\quad F^1\in L^2(0,T;H^{-1}(\Omega )). \end{aligned}$$

Then, problem (75) possesses a unique mild solution \((y,z)\in C([0,T]; H^1_0(\Omega ))\times C([0,T];H^{-1}(\Omega ))\) in the sense that

$$\begin{aligned} y(t)= {\mathcal {T}}_0(t)y_0+\int _0^t{\mathcal {T}}_0(t-s)F^0(s)\,\mathrm{d}s, \end{aligned}$$
(78)

and

$$\begin{aligned} z(t)=\int _t^{T}{\mathcal {T}}_1(s-t)\left( F^1+\nabla \cdot (\nabla y 1_{{\mathcal {O}}})\right) (s)\,\mathrm{d}s. \end{aligned}$$
(79)

Proof

The existence of \(y\in C([0,T]; H^1_0(\Omega ))\) satisfying (78) follows directly from the fact that \((L_0, D(L_0))\) is a m-dissipative operator with dense domain (see Lemma 4.1.5 of [18]). Moreover, a simply computation shows that

$$\begin{aligned}&\Vert \nabla \cdot (\nabla y 1_{{\mathcal {O}}})(t)-\nabla \cdot (\nabla y 1_{{\mathcal {O}}})(t_0)\Vert _{H^{-1}(\Omega )}\nonumber \\&\qquad =\sup _{\zeta \in H^1_{0}(\Omega ),\,\, \Vert \zeta \Vert _{H^1_0(\Omega )}=1}\left| \int _{{\mathcal {O}}}(\nabla y(t)-\nabla y(t_0)) \cdot \nabla \zeta \,\mathrm{d}x\right| \nonumber \\&\qquad \le \left( \int _{\Omega }|\nabla y(t)-\nabla y(t_0)|^2\,\mathrm{d}x\right) ^{\frac{1}{2}}, \end{aligned}$$
(80)

for every \(t,t_0\in [0,T]\), which means that \(\nabla \cdot (\nabla y 1_{{\mathcal {O}}})\in C([0,T]; H^{-1}(\Omega ))\). Now, using that \((L_1, D(L_1))\) is m-dissipative with dense domain and that \(F^1+\nabla \cdot (\nabla y 1_{{\mathcal {O}}})\in L^2(0,T; H^{-1}(\Omega ))\), we have (again by Lemma 4.1.5 of [18]) the existence of \(z\in C([0,T]; H^{-1}(\Omega ))\) satisfying (79).\(\square \)

The next result is dedicated to prove the existence of regular solutions for (75).

Proposition A.2

(Regular Solutions) Assume that \(y_0 \in D(L_0)\),

$$\begin{aligned}&F^0\in C([0,T], H^1_0(\Omega ))\cap W^{1,1}(0,T;H^1_0(\Omega ))\quad \hbox {and} \\&\qquad F^1\in C([0,T], H^{-1}(\Omega ))\cap W^{1,1}(0,T;H^{-1}(\Omega )). \end{aligned}$$

Then, problem (75) possesses a unique regular solution in the sense that

$$\begin{aligned} \begin{array}{l} (y,z)\in Y_0\times Y_1,\\ y_{t} - (1+ia) \Delta y +Ry =F^0, \\ -\,z_{t} - (1-ia) \Delta z +Rz= \nabla \cdot ( \nabla y 1_{{\mathcal {O}}}) +F^1,\\ y|_{t =0} = y_0,\, z|_{t=T}=0. \end{array} \end{aligned}$$
(81)

Proof

We start by using Proposition 4.1.6. in [18], and we get that the mild solution (78) satisfies

$$\begin{aligned} \begin{array}{l} y\in Y_0,\\ y_{t} - (1+ia) \Delta y +Ry =F^0, \\ y|_{t =0} = y_0. \end{array} \end{aligned}$$
(82)

Now, it is not difficult to see that

$$\begin{aligned} \int _0^T\Vert \nabla \cdot \nabla (y_t1_{{\mathcal {O}}})(s)\Vert ^2_{H^{-1}(\Omega )}\,\mathrm{d}s= & {} \int _0^T\left| \sup _{\zeta \in H^1_{0}(\Omega ),\,\, \Vert \zeta \Vert _{H^1_0(\Omega )}=1}\int _{{\mathcal {O}}}\nabla y_t\cdot \nabla \zeta \,\mathrm{d}x\right| ^2\mathrm{d}t\\\le & {} \iint _{Q_T}|\nabla y_t|^2\,\mathrm{d}x\mathrm{d}t, \end{aligned}$$

and hence \(\nabla \cdot (\nabla y 1_{{\mathcal {O}}})\in C([0,T], H^{-1}(\Omega ))\cap W^{1,1}(0,T; H^{-1}(\Omega ))\). Then, we apply again Proposition 4.1.6. of [18], and we get that the mild solution (79) satisfies

$$\begin{aligned} \begin{array}{l} z\in Y_1,\\ -\,z_{t} - (1-ia) \Delta z +Rz= \nabla \cdot ( \nabla y 1_{{\mathcal {O}}}) +F^1, \\ z|_{t = T} = 0. \end{array} \end{aligned}$$
(83)

Combining (82) and (83), we obtain (81). \(\square \)

Remark A.1

If we assume in Proposition A.1 that \(y_0\in L^2(\Omega )\) and that \((F^0,F^1)\in [L^2(0,T; H^{-1}(\Omega ))]^2\), we still can prove the existence of mild solutions for (75). Indeed, let

$$\begin{aligned} \begin{array}{l} D({\tilde{L}}_1)=H^1_0(\Omega ),\\ {\tilde{L}}_1u=(1+ia)\Delta u - R u \in H^{-1}(\Omega ), \end{array} \end{aligned}$$
(84)

m-dissipative with dense domain, and \(\widetilde{{\mathcal {T}}}_1: H^{-1}(\Omega )\rightarrow H^{-1}(\Omega )\) the semigroup generated by it. Then, the mild solution

$$\begin{aligned} y(t)= \widetilde{{\mathcal {T}}}_1(t)y_0+\int _0^t\widetilde{{\mathcal {T}}_1}(t-s)F^0(s)\,\mathrm{d}s, \end{aligned}$$

is such that \(y\in C([0,T]; H^{-1}(\Omega ))\). Using a density argument from regular solutions, we can prove that \(y\in C([0,T]; L^2(\Omega ))\cap L^2(0,T; H^1_0(\Omega ))\), and hence

$$\begin{aligned} \nabla \cdot (\nabla y1_{{\mathcal {O}}})\in L^2(0,T; H^{-1}(\Omega )). \end{aligned}$$

Going back to formula (79), we can use again a density argument from regular solutions, and we obtain that \(z\in C([0,T]; L^2(\Omega ))\cap L^2(0,T; H^1_0(\Omega ))\).

Remark A.2

The proofs in here can be adapted to prove the existence of regular and mild solutions for system (7).

Regular Solutions If we assume that \(\psi _0 \in D(L_0)\), \(g^0\in C([0,T], H^{-1}(\Omega ))\cap W^{1,1}(0,T;H^{-1}(\Omega ))\), and that \(g^1\in C([0,T], H^1_0(\Omega ))\cap W^{1,1}(0,T;H^1_0(\Omega ))\), we can prove existence of regular solution for (7), in the sense that

$$\begin{aligned} \begin{array}{l} (\varphi ,\psi )\in Y_1\times Y_0,\\ -\,\varphi _{t} - (1-ia) \Delta \varphi +R\varphi = \nabla \cdot (\nabla \psi 1_{{\mathcal {O}}})+g^0, \\ \psi _{t} - (1+ia) \Delta \psi +R\psi = g^1,\\ \psi |_{t =0} = \psi _{0}, \varphi |_{t=T}=0. \end{array} \end{aligned}$$
(85)

Mild Solutions If we assume that \(\psi _0 \in L^2(\Omega )\) and \((g^0,g^1)\in [L^2(0,T;H^{-1}(\Omega ))]^2\), there exists a unique mild solution \((\varphi ,\psi )\in [C([0,T]; H^{-1}(\Omega ))]^2\) of (7). In the same way as in Remark A.1, we can prove that \((\varphi ,\psi )\in [C([0,T]; L^2(\Omega ))\cap L^2(0,T; H^1_0(\Omega ))]^2\).

In what follows, we will talk about transposition solutions that are of particular interest for the purposes of this paper.

Let \(y_0\in L^2(\Omega )\) and \((F^0,F^1)\in [L^2(0,T; H^{-1}(\Omega ))]^2\). We say that a pair \((y,z)\in L^2(0,T;H^1_0(\Omega ))\times L^2(Q_T)\) is a solution in the transposition sense of (75), if it satisfies

$$\begin{aligned} \begin{array}{l} \displaystyle \int _{0}^T\langle G^0, y\rangle _{H^{-1}H^1_0}\,\mathrm{d}t=Re\int _{\Omega } \varphi (0)\overline{y_0}\,\mathrm{d}x+\int _0^T\langle F^0,\varphi \rangle _{H^{-1}H^1_0}\,\mathrm{d}t,\\ \displaystyle Re\iint _{Q_T} G^1{\bar{z}}\,\mathrm{d}x\mathrm{d}t=-Re\int _0^T\int _{{\mathcal {O}}}\nabla y\cdot \overline{\nabla \psi }\,\mathrm{d}x\mathrm{d}t+\int _{0}^T\langle F^1,\psi \rangle _{H^{-1} H^1_0}\,\mathrm{d}t, \end{array} \end{aligned}$$
(86)

for every \((G^0,G^1)\in L^2(0,T; H^{-1}(\Omega ))\times L^2(Q_T)\), where \((\varphi ,\psi )\) is the solution of

$$\begin{aligned} \begin{array}{lll} -\,\varphi _{t} - (1-ia) \Delta \varphi +R\varphi =G^0 &{} \text{ in } &{} Q_T,\\ \psi _{t} - (1+ia) \Delta \psi +R\psi = G^1&{} \text{ in } &{}Q_T,\\ \varphi =\psi = 0 &{} \text{ on } &{}\Sigma _T,\\ \psi |_{t =0} = 0, \varphi |_{t=T}=0 &{} \text{ in }&{} \Omega . \end{array} \end{aligned}$$
(87)

We have the following result about the existence and uniqueness of transposition solutions.

Proposition A.3

(Transposition Solution) For \(y_0\in L^2(\Omega )\) and \((F^0,F^1)\in [L^2(0,T; H^{-1}(\Omega ))]^2\), there exists a unique \((y,z)\in [L^2(0,T; H^1_0(\Omega ))]^2\) satisfying (86) for every \((G^0,G^1)\in L^2(0,T; H^{-1}(\Omega ))\times L^2(Q_T)\), where \((\varphi ,\psi )\) is solution of (87).

Proof

Let \(\Phi _1: L^2(0,T; H^1_0(\Omega ))\rightarrow {\mathbb {R}}\) the operator

$$\begin{aligned} \Phi _1(h^0)=Re\int _{\Omega } \varphi (0)\overline{y_0}\,\mathrm{d}x+\int _0^T\langle F^0,\varphi \rangle _{H^{-1}H^1_0}\,\mathrm{d}t, \end{aligned}$$

where \(\varphi \) satisfies the first equation of (87) for \(G^0=-\Delta h^0\in L^2(0,T;H^{-1}(\Omega ))\). From energy estimates, it is easy to see that \(\Phi _1\) is continuous. Then, from Lax–Milgram theorem, there exists \(y\in L^2(0,T; H^1_0(\Omega ))\) such that

$$\begin{aligned} \int _{0}^T\langle G^0, y\rangle _{H^{-1}H^1_0}\,\mathrm{d}t=Re\iint _{Q_T}\nabla h^0\cdot \nabla {\bar{y}}\,\mathrm{d}x\mathrm{d}t= \Phi _1(h^0), \end{aligned}$$

for every \(G^0\in H^{-1}(\Omega )\), where \(-\Delta h^0=G^0\). The existence of \(z\in L^2(Q_T)\) satisfying the second equation of (86) follows in a completely analogous way, since the linear form

$$\begin{aligned} \Phi _2(G^1)=-\,Re\int _0^T\int _{{\mathcal {O}}}\nabla y\cdot \overline{\nabla \psi }\,\mathrm{d}x\mathrm{d}t+\int _{0}^T\langle F^1,\psi \rangle _{H^{-1} H^1_0}\,\mathrm{d}t, \end{aligned}$$

is continuous in \(L^2(Q_T)\).

To prove that \(z\in L^2(0,T; H^1_0(\Omega ))\), we can proceed in the following way. First, we take sequences of regular data such that \(y_0^n\rightarrow y_0\) in \(L^2(\Omega )\) and \((F^0_n, F^1_n)\rightarrow (F^0, F^1)\) in \(L^2(0,T; H^{-1}(\Omega ))\times L^2(Q_T)\). We show that the regular solutions \((y_n,z_n)\) for (75) (whose existence is given in Proposition A.2) with initial data \(y_0^n\) and \((F^0_n, F^1_n)\) on the right-hand side, are also a solution in the transposition sense; moreover, it is bounded in \([L^2(0,T; H^1_0(\Omega ))]^2\). Hence, in the limit, we obtain that \((y,z)\in [L^2(0,T; H^1_0(\Omega ))]^2\).

Now, let us prove that the solution (yz) is unique. If \(({\hat{y}}, {\hat{z}})\) is another solution, then

$$\begin{aligned} Re\int _{0}^T\langle G^0, y-{\hat{y}}\rangle _{H^{-1}H^1_0}\,\mathrm{d}t=0,\quad \hbox {for all}\quad G^0\in L^2(0,T; H^{-1}(\Omega )), \end{aligned}$$

and

$$\begin{aligned} Re\iint _{Q_T} G^1(z-{\hat{z}})\,\mathrm{d}x\mathrm{d}t=-Re\int _0^T\int _{{\mathcal {O}}}(\nabla y-\nabla {\hat{y}})\cdot \overline{\nabla \psi }\,\mathrm{d}x\mathrm{d}t,\quad \hbox {for all}\quad G^1\in L^2(Q_T). \end{aligned}$$

Hence, \(y={\hat{y}}\) and \(z={\hat{z}}\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M.C., Tanaka, T.Y. An Insensitizing Control Problem for the Ginzburg–Landau Equation. J Optim Theory Appl 183, 440–470 (2019). https://doi.org/10.1007/s10957-019-01569-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01569-w

Keywords

Mathematics Subject Classification

Navigation