Skip to main content
Log in

Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The notions of upper and lower global directional derivatives are introduced for dealing with nonconvex and nonsmooth optimization problems. We provide calculus rules and monotonicity properties for these notions. As a consequence, new formulas for the Dini directional derivatives, radial epiderivatives and generalized asymptotic functions are given in terms of the upper and lower global directional derivatives. Furthermore, a mean value theorem, which extend the well-known Diewert’s mean value theorem for radially upper and lower semicontinuous functions, is established. We also provide necessary and sufficient optimality conditions for a point to be a local and/or global solution for the nonconvex minimization problem. Finally, applications for nonconvex and nonsmooth mathematical programming problems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  2. Ansari, Q.H., Lalitha, C.S., Mehta, M.: Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  3. Cambini, A., Martein, L.: Generalized Convexity and Optimization. Springer, Berlin (2009)

    MATH  Google Scholar 

  4. Diewert, W.E.: Alternative characterizations of six kinds of quasiconcavity in the nondifferentiable case with applications to nonsmooth programming. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics. Academic Press, New York (1981)

    MATH  Google Scholar 

  5. Hadjisavvas, N., Komlosi, S., Schaible, S.: Handbook of Generalized Convexity and Generalized Monotonicity. Springer, Boston (2005)

    Book  Google Scholar 

  6. Luc, D.T., Penot, J.P.: Convergence of asymptotic directions. Trans. Am. Math. Soc. 353, 4095–4121 (2001)

    Article  MathSciNet  Google Scholar 

  7. Penot, J.P.: What is quasiconvex analysis? Optimization 47, 35–110 (2000)

    Article  MathSciNet  Google Scholar 

  8. Schaible, S., Ziemba, W.T.: Generalized Concavity in Optimization and Economics. Academic Press, New York (1981)

    MATH  Google Scholar 

  9. Komlosi, S.: Generalized monotonicity and generalized convexity. J. Optim. Theory Appl. 84, 361–376 (1995)

    Article  MathSciNet  Google Scholar 

  10. Rockafellar, R.T.: Generalized directional derivatives and subgradients of nonconvex functions. Can. J. Math. 32, 257–280 (1980)

    Article  MathSciNet  Google Scholar 

  11. Penot, J.P.: Are generalized derivatives useful for generalized convex functions? In: Crouzeix, J.P., et al. (eds.) Generalized Convexity, Generalized Monotonicity, pp. 3–60. Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  12. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006)

    Book  Google Scholar 

  13. Crouzeix, J.P.: Some properties of Dini-derivatives of quasiconvex functions. In: Giannessi, F., et al. (eds.) New Trends in Mathematical Programming. Applied Optimization, vol. 13, pp. 41–57. Springer, Boston (1998)

    Chapter  Google Scholar 

  14. Giorgi, G., Komlosi, S.: Dini derivatives in optimization—part I. Riv. Mat. Sci. Econ. Soc. 15(1), 3–30 (1993)

    MATH  Google Scholar 

  15. Giorgi, G., Komlosi, S.: Dini derivatives in optimization—part II. Riv. Mat. Sci. Econ. Soc. 15(2), 3–24 (1993)

    MATH  Google Scholar 

  16. Auslender, A.: Noncoercive optimization problems. Math. Oper. Res. 21, 769–782 (1996)

    Article  MathSciNet  Google Scholar 

  17. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  18. Goeleven, D.: Complementarity and Variational Inequalities in Electronics. Academic Press, London (2017)

    MATH  Google Scholar 

  19. Amara, Ch.: Directions de majoration d’une fonction quasiconvexe et applications. Serdica Math. J. 24, 289–306 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Maximizing and minimizing quasiconvex functions: related properties, existence and optimality conditions via radial epiderivates. J. Glob. Optim. 63, 99–123 (2015)

    Article  Google Scholar 

  21. Flores-Bazán, F., Hadjisavvas, N., Lara, F., Montenegro, I.: First- and second-order asymptotic analysis with applications in quasiconvex optimization. J. Optim. Theory Appl. 170, 372–393 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lara, F., López, R.: Formulas for asymptotic functions via conjugates, directional derivatives and subdifferentials. J. Optim. Theory Appl. 173, 793–811 (2017)

    Article  MathSciNet  Google Scholar 

  23. Iusem, A., Lara, F.: The \(q\)-asymptotic function in \(c\)-convex analysis. Optimization 68, 1429–1445 (2019)

    Article  MathSciNet  Google Scholar 

  24. Hadjisavvas, N., Lara, F., Martínez-Legaz, J.E.: A quasiconvex asymptotic function with applications in optimization. J. Optim. Theory Appl. 180, 170–186 (2019)

    Article  MathSciNet  Google Scholar 

  25. Iusem, A., Lara, F.: Optimality conditions for vector equilibrium problems with applications. J. Optim. Theory Appl. 180, 187–206 (2019)

    Article  MathSciNet  Google Scholar 

  26. Al-Homidan, S., Hadjisavvas, N., Shaalan, L.: Transformation of quasiconvex functions to eliminate local minima. J. Optim. Theory Appl. 177, 93–105 (2018)

    Article  MathSciNet  Google Scholar 

  27. Luc, D.T., Théra, M.: Derivatives with support and applications. Math. Oper. Res. 19, 659–675 (1994)

    Article  MathSciNet  Google Scholar 

  28. Flores-Bazán, F.: Radial epiderivatives and asymptotic function in nonconvex vector optimization. SIAM J. Optim. 14, 284–305 (2003)

    Article  MathSciNet  Google Scholar 

  29. Hiriart-Urruty, J.B.: On optimality conditions in nondifferentiable programming. Math. Program. 14, 73–86 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Conicyt-Chile throughout Fondecyt Iniciación 11180320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Lara.

Additional information

Communicated by Juan Parra.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, F. Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives. J Optim Theory Appl 185, 134–150 (2020). https://doi.org/10.1007/s10957-019-01613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01613-9

Keywords

Mathematics Subject Classification

Navigation