Skip to main content
Log in

A Subspace Modified Broyden–Fletcher–Goldfarb–Shanno Method for \(\mathcal {B}\)-eigenvalues of Symmetric Tensors

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, finding the \(\mathcal {B}\)-eigenvalues of a symmetric tensor is equivalent to solving a least-square optimization problem. Based on the subspace technique, a trust region algorithm is presented. In trust region subproblem, the modified Broyden–Fletcher–Goldfarb–Shanno formula is adopted to generate the approximated matrices. In order to reduce the computation cost in each iteration, the quadratic subproblem is constructed in a subspace with lower dimension. Theoretic analysis of the given algorithm and convergence properties of the optimal solutions are established. Numerical results show that this method is efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim L.: Singular values and eigenvalues of tensors: a variational approach. In: 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, vol. 1, pp. 129–132 (2005)

  2. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  3. Chang, K., Zhang, T.: On the uniqueness and nonuniqueness of the Z-eigenvector for transition probability tensors. J. Math. Anal. Appl. 408, 525–540 (2013)

    Article  MathSciNet  Google Scholar 

  4. Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)

    Article  MathSciNet  Google Scholar 

  5. Hu, S., Huang, Z., Qi, L.: Strictly nonnegative tensors and nonnegative tensor partition. Sci. China Math. 1, 181–195 (2014)

    Article  MathSciNet  Google Scholar 

  6. Kolda, T., Mayo, J.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)

    Article  MathSciNet  Google Scholar 

  7. Kolda, T., Mayo, J.: An adaptive shifted power methods for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35, 1563–1581 (2014)

    Article  MathSciNet  Google Scholar 

  8. Kofidis, E., Regalia, P.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  9. Li, G., Qi, L., Yu, G.: Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application. Linear Algebra Appl. 2, 813–833 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ni, G., Qi, L., Wang, F., Wang, Y.: The degree of the E-characteristic polynomial of an even order tensor. J. Math Anal. Appl. 329, 1218–1229 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 3, 1090–1099 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Chang, K., Pearson, K., Zhang, T.: Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J. Matrix Anal. Appl. 3, 806–819 (2011)

    Article  MathSciNet  Google Scholar 

  13. Qi, L., Teo, K.: Multivariate polynomial minimization and its application in signal processing. J. Glob. Optim. 26, 419–433 (2003)

    Article  MathSciNet  Google Scholar 

  14. Wei, T., Goldbart, P.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A. 68, 042307 (2003)

    Article  Google Scholar 

  15. Hao, C., Cui, C., Dai, Y.: A feasible trust-region method for calculating extreme Z-eigenvalues of symmetric tensors. Pac. J. Optim. 11, 291–307 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Cao, M., Huang, Q., Yang, Y.: A self-adaptive trust region method for extreme \(\cal{B}\)-eigenvalues of symmetric tensors. Numer. Algorithms 81(2), 407–420 (2019)

    Article  MathSciNet  Google Scholar 

  17. Ni, Q., Qi, L.: A quadratically convergent algorithm for finding the largest eigenvalue of nonnegative homogeneous polynomial map. J. Glob. Optim. 61, 627–641 (2015)

    Article  MathSciNet  Google Scholar 

  18. Yang, W., Ni, Q.: A cubically convergent method for solving the largest eigenvalue of a nonnegative irreducible tensor. Numer. Algorithms 77(4), 1183–1197 (2018)

    Article  MathSciNet  Google Scholar 

  19. Chang, K., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350, 416–422 (2009)

    Article  MathSciNet  Google Scholar 

  20. Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 4, 1582–1601 (2014)

    Article  MathSciNet  Google Scholar 

  21. Yuan, Y., Sun, W.: Optimization Theory and Methods. Science Press, Beijing (1997)

    Google Scholar 

  22. Wang, Z., Yuan, Y.: A subspace implementation of quasi-Newton trust region methods for unconstrained optimization. Numer. Math. 104, 241–269 (2006)

    Article  MathSciNet  Google Scholar 

  23. Xu, C., Zhang, J.: A survey of quasi-Newton equations and quasi-Newton methods for optimization. Ann. Oper. Res. 103, 213–234 (2001)

    Article  MathSciNet  Google Scholar 

  24. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)

    Book  Google Scholar 

  25. Yang Y.: On the truncated conjugate gradient method. Report, ICM99003, ICMSEC, Chinese Academy of Sciences. Beijing, China (1999)

  26. Moré, J.: Recent development in algorithm and software for trust region methods. In: Bachem, A., Grotschel, M., Kortz, B. (eds.) Mathematical Programming: The State of the Art, pp. 258–285. Spinger, Berlin (1983)

    Chapter  Google Scholar 

  27. Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees and the editor for their valuable comments. This work is supported by National Natural Science Foundation of China (11601473), the Innovation Talent Training Program of Science and Technology of Jilin Province of China (20180519011JH), the Science and Technology Development Project Program of Jilin Province (20190303132SF), the Applied Basic Research Programs of Science and Technology Department of Yunnan Province (2018FB001), Program for Excellent Young Talents of Yunnan University, Yunnan Provincial Ten Thousands Plan Young Top Talents, the Doctor Research Startup Project of Beihua University (170220014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueting Yang.

Additional information

Communicated by Anil Aswani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Huang, Q., Li, C. et al. A Subspace Modified Broyden–Fletcher–Goldfarb–Shanno Method for \(\mathcal {B}\)-eigenvalues of Symmetric Tensors. J Optim Theory Appl 184, 419–432 (2020). https://doi.org/10.1007/s10957-019-01617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01617-5

Keywords

Mathematics Subject Classification

Navigation