Skip to main content
Log in

Convergence Analysis of Spatial-Sampling-Based Algorithms for Time-Optimal Smooth Velocity Planning

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

For a vehicle on an assigned path, we consider the problem of finding the time-optimal speed law that satisfies kinematic and dynamic constraints, related to maximum speed and maximum tangential and transversal acceleration. We show that the problem can be solved with an arbitrarily high precision by performing a finite element lengthwise path discretization and using a quadratic spline for interpolation. In particular, we show that an \(\epsilon \)-optimal solution can be found in a time which is a polynomial function of \(\epsilon ^{-1}\), more precisely its eighth power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A function \(f:\mathbb R\rightarrow \mathbb R\) is Lipschitz, if there exists a real positive constant L such that

    \((\forall x,y \in \mathbb R)\ |f(x)-f(y)| \le L |x-y|\).

References

  1. Kant, K., Zucker, S.W.: Toward efficient trajectory planning: the path-velocity decomposition. Int. J. Robot. Res. 5(3), 72–89 (1986)

    Article  Google Scholar 

  2. Velenis, E., Tsiotras, P.: Minimum-time travel for a vehicle with acceleration limits: theoretical analysis and receding-horizon implementation. J. Optim. Theory Appl. 138(2), 275–296 (2008)

    Article  MathSciNet  Google Scholar 

  3. Frego, M., Bertolazzi, E., Biral, F., Fontanelli, D., Palopoli, L.: Semi-analytical minimum time solutions for a vehicle following clothoid-based trajectory subject to velocity constraints. In: 2016 European Control Conference (ECC), pp. 2221–2227 (2016)

  4. Muñoz, V., Ollero, A., Prado, M., Simón, A.: Mobile robot trajectory planning with dynamic and kinematic constraints. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, vol. 4, pp. 2802–2807. San Diego (1994)

  5. Solea, R., Nunes, U.: Trajectory planning with velocity planner for fully-automated passenger vehicles. In: IEEE Intelligent Transportation Systems Conference, ITSC ’06, pp. 474 –480 (2006)

  6. Villagra, J., Milanés, V., Pérez, J., Godoy, J.: Smooth path and speed planning for an automated public transport vehicle. Robot. Auton. Syst. 60, 252–265 (2012)

    Article  Google Scholar 

  7. Chen, C., He, Y., Bu, C., Han, J., Zhang, X.: Quartic Bézier curve based trajectory generation for autonomous vehicles with curvature and velocity constraints. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6108–6113 (2014)

  8. Bobrow, J., Dubowsky, S., Gibson, J.: Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4(3), 3–17 (1985)

    Article  Google Scholar 

  9. Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J.D., Diehl, M.: Time-optimal path tracking for robots: a convex optimization approach. IEEE Trans. Autom. Control 54(10), 2318–2327 (2009)

    Article  MathSciNet  Google Scholar 

  10. Slotine, J.J.E., Yang, H.S.: Improving the efficiency of time-optimal path-following algorithms. IEEE Trans. Robot. Autom. 5(1), 118–124 (1989)

    Article  Google Scholar 

  11. Li, X., Sun, Z., Kurt, A., Zhu, Q.: A sampling-based local trajectory planner for autonomous driving along a reference path. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 376–381 (2014)

  12. Do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, London (1980)

    MATH  Google Scholar 

  13. Consolini, L., Locatelli, M., Minari, A., Piazzi, A.: A linear-time algorithm for minimum-time velocity planning of autonomous vehicles. In: Proceedings of the 24th Mediterranean Conference on Control and Automation (MED). IEEE (2016)

  14. Consolini, L., Locatelli, M., Minari, A., Piazzi, A.: An optimal complexity algorithm for minimum-time velocity planning. Syst. Control Lett. 103, 50–57 (2017)

    Article  MathSciNet  Google Scholar 

  15. Hauser, K.: Fast interpolation and time-optimization on implicit contact submanifolds. In: Proceedings of Robotics: Science and Systems, vol. 8 (2013)

  16. Lipp, T., Boyd, S.: Minimum-time speed optimisation over a fixed path. Int. J. Control 87(6), 1297–1311 (2014)

    Article  MathSciNet  Google Scholar 

  17. Zhang, Q., Li, S., Guo, J.X., Gao, X.S.: Time-optimal path tracking for robots under dynamics constraints based on convex optimization. Robotica 34(9), 2116–2139 (2016)

    Article  Google Scholar 

  18. Velenis, E., Tsiotras, P.: Optimal velocity profile generation for given acceleration limits: receding horizon implementation. In: Proceedings of the 2005, American Control Conference, 2005, vol. 3, pp. 2147–2152 (2005)

  19. Velenis, E., Tsiotras, P.: Optimal velocity profile generation for given acceleration limits: theoretical analysis. In: Proceedings of the 2005, American Control Conference, 2005, vol. 2, pp. 1478–1483 (2005)

  20. Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995)

    Article  MathSciNet  Google Scholar 

  21. Garg, D., Patterson, M., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010)

    Article  MathSciNet  Google Scholar 

  22. Ross, I.M., Fahroo, F.: Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans. Autom. Control 49(8), 1410–1413 (2004)

    Article  MathSciNet  Google Scholar 

  23. Ross, I.M., Karpenko, M.: A review of pseudospectral optimal control: from theory to flight. Annu. Rev. Control 36(2), 182–197 (2012)

    Article  Google Scholar 

  24. Kang, W.: Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems. J. Control Theory Appl. 8(4), 391–405 (2010)

    Article  MathSciNet  Google Scholar 

  25. Cabassi, F., Consolini, L., Locatelli, M.: Time-optimal velocity planning by a bound-tightening technique. Comput. Optim. Appl. 70(1), 61–90 (2018)

    Article  MathSciNet  Google Scholar 

  26. Karnopp, D.: Vehicle Stability, Mechanical Engineering, 1st edn. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  27. Herber, D.R.: Basic implementation of multiple-interval pseudospectral methods to solve optimal control problems. Technical Report UIUC-ESDL-2015-01, Engineering System Design Lab, Urbana, IL, USA (2015)

  28. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MathSciNet  Google Scholar 

  29. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Book  Google Scholar 

Download references

Acknowledgements

This research has financially been supported by the Programme “FIL-Quota Incentivante” of University of Parma and co-sponsored by Fondazione Cariparma. The authors are grateful to the Associate Editor and the anonymous Reviewers for the careful reading and the many suggestions which allowed to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Consolini.

Additional information

Communicated by Felix L. Chernousko.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consolini, L., Laurini, M., Locatelli, M. et al. Convergence Analysis of Spatial-Sampling-Based Algorithms for Time-Optimal Smooth Velocity Planning. J Optim Theory Appl 184, 1083–1108 (2020). https://doi.org/10.1007/s10957-019-01626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01626-4

Keywords

Mathematics Subject Classification

Navigation