Abstract
In this paper, we first propose a linearized method for solving the tensor complementarity problem. The subproblems of the method can be solved by solving linear complementarity problems with a constant matrix. We show that if the initial point is appropriately chosen, then the generated sequence of iterates converges to a solution of the problem monotonically. We then propose a lower-dimensional equation method and establish its monotone convergence. The subproblems of the method are lower-dimensional systems of linear equations. At last, we do numerical experiments to test the proposed methods. The results show the efficiency of the proposed methods.

Similar content being viewed by others
References
Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33(03), 308–323 (2017)
Huang, Z.H., Qi, L.: Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66(3), 557–576 (2017)
Huang, Z.H., Qi, L.: Tensor Complementarity Problems-Part III: Applications. J. Optim. Theory Appl. 183(3), 771–791 (2019)
Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 11(3), 471–482 (2017)
Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169(3), 1069–1078 (2016)
Wang, Y., Huang, Z., Bai, X.: Exceptionally regular tensors and tensor complementarity peoblems. Optim. Methods Softw. 31(4), 815–828 (2016)
Wang, X.Y., Chen, H.B., Wang, Y.J.: On the solution existence of Cauchy tensor variational inequality problems. Pac. J. Optim. 14(3), 479–487 (2018)
Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168(2), 475–487 (2016)
Wang, X., Che, M., Wei, Y.: Existence and uniqueness of positive solution for \(H^+\)-tensor equations. Appl. Math. Lett. 98, 191–198 (2019)
Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170(1), 72–84 (2016)
Gowda, M.S., Luo, Z., Qi, L.: Z-tensors and complementarity problems (2015). arXiv:1510.07933
Liu, D., Li, W., Vong, S.W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear Algebra 66(9), 1726–1749 (2018)
Wang, X., Che, M., Wei, Y.: Global uniqueness and solvability of tensor complementarity problems for \(H^+\)-tensors. Numer. Algorithms (2019). https://doi.org/10.1007/s11075-019-00769-9
Mohamed, T.A., Rahmati, S.: Complementarity problems over a hypermatrix (tensor) set. Optim. Lett. 12(6), 1443–1454 (2018)
Ling, L., He, H., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67(2), 341–358 (2018)
Song, Y., Qi, L.: Error bound of P-tensor nonlinear complementarity problem (2015). arXiv:1508.02005v2
Yu, W., Ling, C., He, H.: On the properties of tensor complementarity problems. Pac. J. Optim. 14(4), 675–691 (2018)
Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and their Applications, vol. 39 of Advances in Mechanics and Mathematics. Springer, Singapore (2018)
Huang, Z.H., Qi, L.: Tensor complementarity problems–Part I: basic theory. J. Optim. Theory Appl. 183(1), 1–23 (2019)
Xie, S.L., Li, D.H., Xu, H.R.: An iterative method for finding the least solution to the tensor complementarity problem. J. Optim. Theory Appl. 175(1), 119–136 (2017)
Han, L.: A continuation method for tensor complementarity problems. J. Optim. Theory Appl. (2018). https://doi.org/10.1007/s10957-018-1422-2
Du, S., Zhang, L., Chen, C., Qi, L.: Tensor absolute value equations. Sci. China Math. (2018). https://doi.org/10.1007/s11425-017-9238-6
Du, S., Zhang, L.: A mixed integer programming approach to the tensor complementarity problem. J. Global Optim. 73(4), 789–800 (2019)
Wang, X., Che, M., Qi, L., Wei, Y.: Gradient dynamic approach to the tensor complementarity problem. Opt. Methods Softw. (2019). https://doi.org/10.1080/10556788.2019.1578766
Zhao, X., Fan, J.: A semidefinite method for tensor complementarity problems. Optim. Methods Softw. (2018). https://doi.org/10.1080/10556788.2018.1439489
Zhang, K.L., Chen, H.B., Zhao, P.F.: A potential reduction method for tensor complementarity problems. J. Ind. Manag. Optim. 15(2), 429–443 (2019)
Bai, X., He, H., Ling, C., Zhou, G.: An efficient nonnegativity preserving algorithm for multilinear systems with nonsingular M-tensors (2018). arXiv:1811.09917v1
Balaji, R., Palpandi, K.: Positive definite and Gram tensor complementarity problems. Optim. Lett. 12(3), 639–648 (2018)
Berman, A., Plemmons, R.J.: Non-negative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)
Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. SIAM, Philadelphia (2009)
Ding, W., Qi, L., Wei, Y.: M-Tensors and Nonsingular M-Tensors. Linear Algebra Appl. 439(10), 3264–3278 (2013)
Huang, Z.H., Qi, L.: Tensor Complementarity Problems-Part II: Solution Methods. J. Optim. Theory Appl. 183(2), 365–385 (2019)
Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)
Zhang, L., Qi, L., Zhou, G.: M-tensors and some applications. SIAM J. Matrix Anal. Appl. 35(2), 437–452 (2014)
Ding, W., Luo, Z., Qi, L.: P-tensors, P\(_0\)-tensors, and their applications. Linear Algebra Appl. 555, 336–354 (2018)
Dai, P.F., Li, J.C., Li, Y.T., Bai, J.: A general preconditioner for linear complementarity problem with an M-matrix. J. Comput. Appl. Math. 317, 100–112 (2017)
Dehghan, M., Hajarian, M.: Two class of synchronous matrix multisplitting schemes for solving linear complementarity problems. J. Comput. Appl. Math. 235(15), 4325–4336 (2011)
Li, L., Kobayashi, Y.: A block recursive algorithm for the linear complementarity problem with an M-matrix. Information 2(6), 287–293 (2006)
Li, D.H., Guan, H.B., Wang, X.Z.: Finding a nonnegative solution to an M-tensor equation (2018). arXiv:1811.11343
Bader, B.W., Kolda, T.G., et al.: MATLAB Tensor Toolbox Version 2.6 (2015)
Li, D.H., Xie, S., Xu, H.R.: Splitting methods for tensor equations. Numer. Linear Algebra Appl. (2017). https://doi.org/10.1002/nla.2102
Ding, W., Wei, Y.: Solving multi-linear systems with M-Tensors. J. Sci. Comput. 68(2), 683–715 (2016)
Xie, Z.J., Jin, X.Q., Wei, Y.M.: Tensor methods for solving symmetric M-tensor systems. J. Sci. Comput. 74(1), 412–425 (2017)
Xu, H.R., Li, D.H., Xie, S.L.: An equivalent tensor equation to the tensor complementarity problem with positive semi-definite Z-tensor. Optim. Lett. (2018). https://doi.org/10.1080/10556788.2018.1439489
Acknowledgements
The authors would like to thank two anonymous referees for their valuable comments. This paper was supported by the Chinese NSF Grant 11771157 and Hunan Provincial Education Department of China Grant 15C0359.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Communicated by Liqun Qi.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Guan, HB., Li, DH. Linearized Methods for Tensor Complementarity Problems. J Optim Theory Appl 184, 972–987 (2020). https://doi.org/10.1007/s10957-019-01627-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-019-01627-3