Skip to main content
Log in

Portfolio Optimization by a Bivariate Functional of the Mean and Variance

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the problem of maximization of functional of expected portfolio return and variance portfolio return in its most general form and present an explicit closed-form solution of the optimal portfolio selection. This problem is closely related to expected utility maximization and two-moment decision models. We show that most known risk measures, such as mean–variance, expected shortfall, Sharpe ratio, generalized Sharpe ratio and the recently introduced tail mean variance, are special cases of this functional. The new results essentially generalize previous results by the authors concerning the maximization of combination of expected portfolio return and a function of the variance of portfolio return. Our general mean–variance functional is not restricted to a concave function with a single optimal solution. Thus, we also provide optimal solutions to a fractional programming problem, that is arising in portfolio theory. The obtained analytic solution of the optimization problem allows us to conclude that all the optimization problems corresponding to the general functional have efficient frontiers belonged to the efficient frontier obtained for the mean–variance portfolio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steinbach, M.C.: Markowitz revisited: mean-variance models in financial portfolio analysis. SIAM Rev. 43(1), 31–85 (2001)

    Article  MathSciNet  Google Scholar 

  2. Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, San Francisco (1984)

    MATH  Google Scholar 

  3. Merton, R.C.: An analytic derivation of the efficient portfolio frontier. J. Financ. Quant. Anal. 7, 1851–1872 (1972)

    Article  Google Scholar 

  4. Elton, E.J., Gruber, M.J.: Modern Portfolio Theory and Investment Analysis. Wiley, New York (1987)

    Google Scholar 

  5. Zenios, S.A.: Financial Optimization. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  6. Ziemba, W.T., Mulvey, J.M.: Worldwide Asset and Liability Modeling. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Panjer, H., Boyle, P. (eds.): Financial economics: With Applications to Investments, Insurance, and Pensions. Society of Actuaries, Schaumburg (1998)

    Google Scholar 

  8. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  9. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge, London (2004)

    Book  Google Scholar 

  10. Landsman, Z., Makov, U.: Minimization of a function of a quadratic functional with application to optimal portfolio selection. J. Optim. Theory Appl. (2015). https://doi.org/10.1007/s10957-015-0856-z

    Article  MATH  Google Scholar 

  11. Landsman, Z.: Minimization of the root of a quadratic functional under an affine equality constraint. J. Comput. Appl. Math. 216, 319–327 (2008)

    Article  MathSciNet  Google Scholar 

  12. Landsman, Z.: Minimization of the root of a quadratic functional under a system of affine equality constraints with application to portfolio management. J. Comput. Appl. Math. 220, 739–748 (2008)

    Article  MathSciNet  Google Scholar 

  13. Landsman, Z., Makov, U.: Translation-invariant and positive-homogeneous risk measures and optimal portfolio management. Eur. J. Finance 17, 307–320 (2011)

    Article  Google Scholar 

  14. Sharpe, W.F.: The sharpe ratio. Streetwise—the Best of the Journal of Portfolio Management, pp. 169–185. Princeton University Press, Princeton (1998)

    Google Scholar 

  15. Sharpe, W.F.: Mutual fund performance. J. Bus. 39, 119–138 (1966)

    Article  Google Scholar 

  16. Landsman, Z., Makov, U., Shushi, T.: A generalized measure for the optimal portfolio selection problem and its explicit solution. Risks 6, 1–15 (2018)

    Article  Google Scholar 

  17. Tobin, J.: Liquidity preference as behaviour towards risk. Rev. Econ. Stud. 25, 65–86 (1958)

    Article  Google Scholar 

  18. Tobin, J.: The theory of portfolio selection. In: Hahn, F.H., Brechling, F.P.R. (eds.) The Theory of Interest Rates. Macmillan, London (1965)

    Google Scholar 

  19. Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  20. Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments. Wiley, New York (1959)

    Google Scholar 

  21. Samuelson, P.A.: The fundamental approximation theorem of portfolio analysis in terms of means, variances and higher moments. Rev. Econ. Stud. 37(4), 537–542 (1970)

    Article  Google Scholar 

  22. Meyer, J.: Two-moment decision models and expected utility maximization. Am. Econ. Rev. 77, 421–430 (1987)

    Google Scholar 

  23. Lajeri-Chaherli, F.: Proper and standard risk aversion in two-moment decision models. Theory Decis 57, 213–225 (2005)

    Article  MathSciNet  Google Scholar 

  24. Lajeri-Chaherli, F.: On the concavity and quasiconcavity properties of (\(\mu,\sigma \)). Utility functions. Bull. Econ. Res. 68(3), 287–296 (2016)

    Article  MathSciNet  Google Scholar 

  25. Best, M.J., Grauer, R.R.: The efficient set mathematics when mean-variance problems are subject to general linear constraints. J. Econ. Bus. 42, 105–120 (1990)

    Article  Google Scholar 

  26. Schaible, S.: Fractional programming. Z. Oper. Res. 27, 39–54 (1983). https://doi.org/10.1007/bf01916898

    Article  MathSciNet  MATH  Google Scholar 

  27. Schaible, S., Toshidide, I.: Fractional programming. Eur. J. Oper. Res. 12, 325–338 (1983)

    Article  MathSciNet  Google Scholar 

  28. Levy, H., Markowitz, H.: Approximating expected utility by a function of mean and variance. Am. Econ. Rev. 69, 308–317 (1979)

    Google Scholar 

  29. Kroll, Y., Levy, H., Markowitz, H.: Mean-variance versus direct utility maximization. J. Finance 39, 47–61 (1984)

    Article  Google Scholar 

  30. Garlappi, L., Skoulakis, G.: Taylor series approximations to expected utility and optimal portfolio choice. Math. Financ. Econ. 5, 121–156 (2011)

    Article  MathSciNet  Google Scholar 

  31. Johnstone, D., Lindley, D.: Mean-variance and expected utility: the borch paradox. Stat. Sci. 28, 223–237 (2013)

    Article  MathSciNet  Google Scholar 

  32. Fang, K.T., Kotz, S., Ng, K.W.: Symmetric Multivariate and Related Distributions, pp. 1–220. Chapman and Hall, London (1990)

    Book  Google Scholar 

  33. Landsman, Z.M., Valdez, E.A.: Tail conditional expectations for elliptical distributions. N. Am. Actuar. J. 7, 55–71 (2003)

    Article  MathSciNet  Google Scholar 

  34. Owen, J., Rabinovitch, R.: On the class of elliptical distributions and their applications to the theory of portfolio choice. J. Finance 38, 745–752 (1983)

    Article  Google Scholar 

  35. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions. Wiley, New York (1995)

    MATH  Google Scholar 

  36. Kotz, S., Kozubowski, T., Podgorski, K.: The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics Engineering and Finance. Birkhauser, Basel (2001)

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the Israel Science Foundation (Grant N 1686/17). The authors are grateful to the anonymous reviewer and the Editor-in-Chief for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shushi.

Additional information

Communicated by Bruno Bouchard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landsman, Z., Makov, U. & Shushi, T. Portfolio Optimization by a Bivariate Functional of the Mean and Variance. J Optim Theory Appl 185, 622–651 (2020). https://doi.org/10.1007/s10957-020-01664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01664-3

Keywords

Mathematics Subject Classification

Navigation