Abstract
We review and discuss results obtained through an application of tools of nonlinear optimal control to biomedical problems. We discuss various aspects of the modeling of the dynamics (such as growth and interaction terms), modeling of treatment (including pharmacometrics of the drugs), and give special attention to the choice of the objective functional to be minimized. Indeed, many properties of optimal solutions are predestined by this choice which often is only made casually using some simple ad hoc heuristics. We discuss means to improve this choice by taking into account the underlying biology of the problem.










Similar content being viewed by others
Data Availability Statement
All data generated or analyzed during this study are included in this published article.
References
Eisen, M.: Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics, vol. 30. Springer, Berlin (1979)
Kimmel, M., Swierniak, A.: An optimal control problem related to leukemia chemotherapy. Sci. Bul. Sil. Tech. Univ. 65, 120–130 (1983)
Swan, G.W.: Applications of Optimal Control Theory in Medicine. Marcel Dekker, New York (1984)
Swan, G.W.: General applications of optimal control theory in cancer chemotherapy. IMA J. Math. Appl. Med. Biol. 5, 303–316 (1988)
Swan, G.W.: Role of optimal control in cancer chemotherapy. Math. Biosci. 101, 237–284 (1990)
Swierniak, A.: Optimal treatment protocols in leukemia—modelling the proliferation cycle. In: Proceedings of the 12th IMACS World Congress, Paris, vol. 4, pp. 170–172 (1988)
Martin, R., Teo, K.L.: Optimal Control of Drug Administration in Cancer Chemotherapy. World Scientific Press, Singapore (1994)
Swierniak, A.: Cell cycle as an object of control. J. Biol. Syst. 3, 41–54 (1995)
de Pillis, L.G., Radunskaya, A.: A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theor. Med. 3, 79–100 (2001)
Ledzewicz, U., Schättler, H.: Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Theory Appl. 114, 609–637 (2002)
Ledzewicz, U., Schättler, H.: Analysis of a cell-cycle specific model for cancer chemotherapy. J. Biol. Syst. 10, 183–206 (2002)
Swierniak, A., Ledzewicz, U., Schättler, H.: Optimal control for a class of compartmental models in cancer chemotherapy. Int. J. Appl. Math. Comput. Sci. 13, 357–368 (2003)
Ledzewicz, U., Schättler, H.: Antiangiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Control Optim. 46(3), 1052–1079 (2007)
Fernández, L.A., Pola, C.: Optimal control problems for the Gompertz model under the Norton–Simon hypothesis in chemotherapy. Discr. Cont. Dyn. Syst. B 24(6), 2577–2612 (2019). https://doi.org/10.3934/dcdsb.2018266
Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies. Interdisciplinary Applied Mathematics, vol. 42. Springer, New York (2015)
Norton, L.: A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988)
Wheldon, T.E.: Mathematical Models in Cancer Research. Hilger Publishing, Boston (1988)
d’Onofrio, A.: Fractal growth of tumors and other cellular populations: linking the mechanistic to the phenomenological modeling and vice versa. Chaos Solitons Fractals 41, 875–880 (2009)
Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)
Stepanova, N.V.: Course of the immune reaction during the development of a malignant tumour. Biophysics 24, 917–923 (1980)
Moore, H., Ledzewicz, U., Strauss, L.: Optimization of combination therapy for chronic myeloid leukemia with dosing constraints. J. Math. Biol. 77(5), 1533–1561 (2018). https://doi.org/10.1007/s00285-018-1262-6
Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, A.S.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295–321 (1994)
de Vladar, H.P., González, J.A.: Dynamic response of cancer under the influence of immunological activity and therapy. J. Theor. Biol. 227, 335–348 (2004)
d’Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191, 159–184 (2004)
Dunn, G.P., Old, L.J., Schreiber, R.D.: The three E’s of cancer immunoediting. Annu. Rev. Immunol. 22, 322–360 (2004)
Chadwick, K.H., Leenhouts, H.P.: The Molecular Theory of Radiation Biology. Springer, Berlin (1981)
Wein, L.M., Cohen, J.E., Wu, J.T.: Dynamic optimization of a linear-quadratic model with incomplete repair and volume-dependent sensitivity and repopulation. Int. J. Radiat. Oncol. 47(4), 1073–1083 (2000)
Skipper, H.E.: On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future). Bul. Math. Biol. 48, 253–278 (1986)
Shimoda, S., Nishida, K., Sakakida, M., Konno, Y., Ichinose, K., Uehara, M., Nowak, T., Shichiri, M.: Closed-loop subcutaneous insulin infusion algorithm with a short-acting insulin analog for long-term clinical application of a wearable artificial endocrine pancreas. Front. Med. Biol. Eng. 8(3), 197–211 (1997)
Jain, R.K.: Normalizing tumor vasculature with antiangiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)
Jain, R.K., Munn, L.L.: Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents. Princ. Pract. Oncol. 21, 1–7 (2007)
d’Onofrio, A., Ledzewicz, U., Maurer, H., Schättler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009). https://doi.org/10.1016/j.mbs.2009.08.004
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Macmillan, New York (1964)
Bonnard, B., Chyba, M.: Singular Trajectories and Their Role in Control Theory. Mathématiques and Applications, vol. 40. Springer, Paris (2003)
Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences, San Francisco (2007)
Schättler, H., Ledzewicz, U.: Geometric Optimal Control. Interdisciplinary Applied Mathematics, vol. 38. Springer, New York (2012)
Schättler, H., Ledzewicz, U., Maurer, H.: Sufficient conditions for strong local optimality in optimal control problems with \(L_2\)-type objectives and control constraints. Discr. Cont. Dyn. Syst. B 19(8), 2657–2679 (2014). https://doi.org/10.3934/dcdsb.2014.19.2657
Ferreira, M.M., Ledzewicz, U., do Rosario de Pinho, M., Schättler, H.: A model for cancer chemotherapy with state space constraints. Nonlinear Anal. 63(5), 2591–2602 (2005)
Schättler, H.: A local field of extremals for optimal control problems with state constraints of relative degree \(1\). J. Dyn. Control Syst. 12, 563–599 (2006)
Ledzewicz, U., Naghnaeian, M., Schättler, H.: Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. Math. Biol. 64, 557–577 (2012). https://doi.org/10.1007/s00285-011-0424-6
Ledzewicz, U., Faraji Mosalman, M.S., Schättler, H.: Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discr. Contin. Dyn. Syst. B 18, 1031–1051 (2013). https://doi.org/10.3934/dcdsb.2013.18.1031
Hanahan, D., Bergers, G., Bergsland, E.: Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105(8), 1045–1047 (2000)
Pasquier, E., Ledzewicz, U.: Perspective on “more is not necessarily bette”: metronomic chemotherapy. Newsl. Soc. Math. Biol. 26(2), 9–10 (2013)
Ledzewicz, U., Maurer, H., Schättler, H.: Optimal combined radio- and antiangiogenic cancer therapy. J. Optim. Theory Appl. 180, 321–340 (2019). https://doi.org/10.1007/s10957-018-1426-y
Ledzewicz, U., Maurer, H., Schättler, H.: Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci. Eng. 8(2), 307–323 (2011). https://doi.org/10.3934/mbe.2011.8.307
Ledzewicz, U., Maurer, H., Schättler, H.: Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and Its Applications in Engineering, pp. 267–276. Springer, Berlin (2010)
Ledzewicz, U., Schättler, H.: Singular controls and chattering arcs in optimal control problems arising in biomedicine. Contr. Cybern. 38, 1501–1523 (2009)
Ledzewicz, U., Schättler, H.: On the role of pharmacometrics in mathematical models for cancer treatments. Discr. Contin. Dyn. Syst. B 1, 2 (2017). https://doi.org/10.3934/dcdsb.2020213. (published online)
Ledzewicz, U., Olumoye, O., Schättler, H.: On optimal chemotherapy with a stongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Math. Biosci. Eng. 10(3), 787–802 (2012). https://doi.org/10.3934/mbe.2013.10.787
Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control Dyn. 29(6), 1435–1440 (2006)
Zhang, W., Ma, H.: The Chebyshev–Legendre collocation method for a class of optimal control problems. Int. J. Comput. Math. 85(2), 225–240 (2008)
Bedrossian, N.S., Bhatt, S., Kang, W., Ross, I.M.: Zero-propellant maneuver guidance. IEEE Control Syst. Mag. 29, 53–73 (2009)
Rao, A.V., Benson, D.A., Huntington, G.T., Francolin, C., Darby, C.L., Patterson, M.A.: User’s Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method. University of Florida report (2008)
Ledzewicz, U., Schättler, H.: Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J. Theor. Biol. 252, 295–312 (2008)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)
Büskens, C., Maurer, H.: SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control. J. Comput. Appl. Math. 120, 85–108 (2000)
Maurer, H., Büskens, C., Kim, J.H.R., Kaya, Y.: Optimization methods for the verification of second-order sufficient conditions for bang-bang controls. Opt. Control Appl. Methods 26, 129–156 (2005)
Duda, Z.: A gradient method for application of chemotherapy models. J. Biol. Syst. 3, 3–11 (1995)
Acknowledgements
We are grateful to four anonymous referees of this paper for their useful comments which helped us improve our presentation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ledzewicz, U., Schättler, H. On the Role of the Objective in the Optimization of Compartmental Models for Biomedical Therapies. J Optim Theory Appl 187, 305–335 (2020). https://doi.org/10.1007/s10957-020-01754-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-020-01754-2
Keywords
- Optimal control
- \(L_1\)- and \(L_2\)-type objectives
- Mathematical modeling
- Cancer therapies
- Pharmacometrics