Skip to main content

Advertisement

Log in

On the Role of the Objective in the Optimization of Compartmental Models for Biomedical Therapies

  • Invited Paper
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We review and discuss results obtained through an application of tools of nonlinear optimal control to biomedical problems. We discuss various aspects of the modeling of the dynamics (such as growth and interaction terms), modeling of treatment (including pharmacometrics of the drugs), and give special attention to the choice of the objective functional to be minimized. Indeed, many properties of optimal solutions are predestined by this choice which often is only made casually using some simple ad hoc heuristics. We discuss means to improve this choice by taking into account the underlying biology of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

References

  1. Eisen, M.: Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics, vol. 30. Springer, Berlin (1979)

    MATH  Google Scholar 

  2. Kimmel, M., Swierniak, A.: An optimal control problem related to leukemia chemotherapy. Sci. Bul. Sil. Tech. Univ. 65, 120–130 (1983)

    Google Scholar 

  3. Swan, G.W.: Applications of Optimal Control Theory in Medicine. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  4. Swan, G.W.: General applications of optimal control theory in cancer chemotherapy. IMA J. Math. Appl. Med. Biol. 5, 303–316 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Swan, G.W.: Role of optimal control in cancer chemotherapy. Math. Biosci. 101, 237–284 (1990)

    MATH  Google Scholar 

  6. Swierniak, A.: Optimal treatment protocols in leukemia—modelling the proliferation cycle. In: Proceedings of the 12th IMACS World Congress, Paris, vol. 4, pp. 170–172 (1988)

  7. Martin, R., Teo, K.L.: Optimal Control of Drug Administration in Cancer Chemotherapy. World Scientific Press, Singapore (1994)

    MATH  Google Scholar 

  8. Swierniak, A.: Cell cycle as an object of control. J. Biol. Syst. 3, 41–54 (1995)

    Google Scholar 

  9. de Pillis, L.G., Radunskaya, A.: A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theor. Med. 3, 79–100 (2001)

    MATH  Google Scholar 

  10. Ledzewicz, U., Schättler, H.: Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Theory Appl. 114, 609–637 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Ledzewicz, U., Schättler, H.: Analysis of a cell-cycle specific model for cancer chemotherapy. J. Biol. Syst. 10, 183–206 (2002)

    MATH  Google Scholar 

  12. Swierniak, A., Ledzewicz, U., Schättler, H.: Optimal control for a class of compartmental models in cancer chemotherapy. Int. J. Appl. Math. Comput. Sci. 13, 357–368 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Ledzewicz, U., Schättler, H.: Antiangiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Control Optim. 46(3), 1052–1079 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Fernández, L.A., Pola, C.: Optimal control problems for the Gompertz model under the Norton–Simon hypothesis in chemotherapy. Discr. Cont. Dyn. Syst. B 24(6), 2577–2612 (2019). https://doi.org/10.3934/dcdsb.2018266

    Article  MathSciNet  MATH  Google Scholar 

  15. Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies. Interdisciplinary Applied Mathematics, vol. 42. Springer, New York (2015)

    MATH  Google Scholar 

  16. Norton, L.: A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988)

    Google Scholar 

  17. Wheldon, T.E.: Mathematical Models in Cancer Research. Hilger Publishing, Boston (1988)

    MATH  Google Scholar 

  18. d’Onofrio, A.: Fractal growth of tumors and other cellular populations: linking the mechanistic to the phenomenological modeling and vice versa. Chaos Solitons Fractals 41, 875–880 (2009)

    Google Scholar 

  19. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)

    Google Scholar 

  20. Stepanova, N.V.: Course of the immune reaction during the development of a malignant tumour. Biophysics 24, 917–923 (1980)

    Google Scholar 

  21. Moore, H., Ledzewicz, U., Strauss, L.: Optimization of combination therapy for chronic myeloid leukemia with dosing constraints. J. Math. Biol. 77(5), 1533–1561 (2018). https://doi.org/10.1007/s00285-018-1262-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, A.S.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295–321 (1994)

    MATH  Google Scholar 

  23. de Vladar, H.P., González, J.A.: Dynamic response of cancer under the influence of immunological activity and therapy. J. Theor. Biol. 227, 335–348 (2004)

    MathSciNet  MATH  Google Scholar 

  24. d’Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191, 159–184 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Dunn, G.P., Old, L.J., Schreiber, R.D.: The three E’s of cancer immunoediting. Annu. Rev. Immunol. 22, 322–360 (2004)

    Google Scholar 

  26. Chadwick, K.H., Leenhouts, H.P.: The Molecular Theory of Radiation Biology. Springer, Berlin (1981)

    Google Scholar 

  27. Wein, L.M., Cohen, J.E., Wu, J.T.: Dynamic optimization of a linear-quadratic model with incomplete repair and volume-dependent sensitivity and repopulation. Int. J. Radiat. Oncol. 47(4), 1073–1083 (2000)

    Google Scholar 

  28. Skipper, H.E.: On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future). Bul. Math. Biol. 48, 253–278 (1986)

    MathSciNet  Google Scholar 

  29. Shimoda, S., Nishida, K., Sakakida, M., Konno, Y., Ichinose, K., Uehara, M., Nowak, T., Shichiri, M.: Closed-loop subcutaneous insulin infusion algorithm with a short-acting insulin analog for long-term clinical application of a wearable artificial endocrine pancreas. Front. Med. Biol. Eng. 8(3), 197–211 (1997)

    Google Scholar 

  30. Jain, R.K.: Normalizing tumor vasculature with antiangiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)

    Google Scholar 

  31. Jain, R.K., Munn, L.L.: Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents. Princ. Pract. Oncol. 21, 1–7 (2007)

    Google Scholar 

  32. d’Onofrio, A., Ledzewicz, U., Maurer, H., Schättler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009). https://doi.org/10.1016/j.mbs.2009.08.004

    Article  MathSciNet  MATH  Google Scholar 

  33. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Macmillan, New York (1964)

    MATH  Google Scholar 

  34. Bonnard, B., Chyba, M.: Singular Trajectories and Their Role in Control Theory. Mathématiques and Applications, vol. 40. Springer, Paris (2003)

    MATH  Google Scholar 

  35. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences, San Francisco (2007)

    MATH  Google Scholar 

  36. Schättler, H., Ledzewicz, U.: Geometric Optimal Control. Interdisciplinary Applied Mathematics, vol. 38. Springer, New York (2012)

    MATH  Google Scholar 

  37. Schättler, H., Ledzewicz, U., Maurer, H.: Sufficient conditions for strong local optimality in optimal control problems with \(L_2\)-type objectives and control constraints. Discr. Cont. Dyn. Syst. B 19(8), 2657–2679 (2014). https://doi.org/10.3934/dcdsb.2014.19.2657

    Article  MATH  Google Scholar 

  38. Ferreira, M.M., Ledzewicz, U., do Rosario de Pinho, M., Schättler, H.: A model for cancer chemotherapy with state space constraints. Nonlinear Anal. 63(5), 2591–2602 (2005)

    MATH  Google Scholar 

  39. Schättler, H.: A local field of extremals for optimal control problems with state constraints of relative degree \(1\). J. Dyn. Control Syst. 12, 563–599 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Ledzewicz, U., Naghnaeian, M., Schättler, H.: Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. Math. Biol. 64, 557–577 (2012). https://doi.org/10.1007/s00285-011-0424-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Ledzewicz, U., Faraji Mosalman, M.S., Schättler, H.: Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discr. Contin. Dyn. Syst. B 18, 1031–1051 (2013). https://doi.org/10.3934/dcdsb.2013.18.1031

    Article  MathSciNet  MATH  Google Scholar 

  42. Hanahan, D., Bergers, G., Bergsland, E.: Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105(8), 1045–1047 (2000)

    Google Scholar 

  43. Pasquier, E., Ledzewicz, U.: Perspective on “more is not necessarily bette”: metronomic chemotherapy. Newsl. Soc. Math. Biol. 26(2), 9–10 (2013)

    Google Scholar 

  44. Ledzewicz, U., Maurer, H., Schättler, H.: Optimal combined radio- and antiangiogenic cancer therapy. J. Optim. Theory Appl. 180, 321–340 (2019). https://doi.org/10.1007/s10957-018-1426-y

    Article  MathSciNet  MATH  Google Scholar 

  45. Ledzewicz, U., Maurer, H., Schättler, H.: Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci. Eng. 8(2), 307–323 (2011). https://doi.org/10.3934/mbe.2011.8.307

    Article  MathSciNet  MATH  Google Scholar 

  46. Ledzewicz, U., Maurer, H., Schättler, H.: Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and Its Applications in Engineering, pp. 267–276. Springer, Berlin (2010)

    Google Scholar 

  47. Ledzewicz, U., Schättler, H.: Singular controls and chattering arcs in optimal control problems arising in biomedicine. Contr. Cybern. 38, 1501–1523 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Ledzewicz, U., Schättler, H.: On the role of pharmacometrics in mathematical models for cancer treatments. Discr. Contin. Dyn. Syst. B 1, 2 (2017). https://doi.org/10.3934/dcdsb.2020213. (published online)

    Article  Google Scholar 

  49. Ledzewicz, U., Olumoye, O., Schättler, H.: On optimal chemotherapy with a stongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Math. Biosci. Eng. 10(3), 787–802 (2012). https://doi.org/10.3934/mbe.2013.10.787

    Article  MATH  Google Scholar 

  50. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control Dyn. 29(6), 1435–1440 (2006)

    Google Scholar 

  51. Zhang, W., Ma, H.: The Chebyshev–Legendre collocation method for a class of optimal control problems. Int. J. Comput. Math. 85(2), 225–240 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Bedrossian, N.S., Bhatt, S., Kang, W., Ross, I.M.: Zero-propellant maneuver guidance. IEEE Control Syst. Mag. 29, 53–73 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Rao, A.V., Benson, D.A., Huntington, G.T., Francolin, C., Darby, C.L., Patterson, M.A.: User’s Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method. University of Florida report (2008)

  54. Ledzewicz, U., Schättler, H.: Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J. Theor. Biol. 252, 295–312 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Büskens, C., Maurer, H.: SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control. J. Comput. Appl. Math. 120, 85–108 (2000)

    MathSciNet  MATH  Google Scholar 

  57. Maurer, H., Büskens, C., Kim, J.H.R., Kaya, Y.: Optimization methods for the verification of second-order sufficient conditions for bang-bang controls. Opt. Control Appl. Methods 26, 129–156 (2005)

    MathSciNet  Google Scholar 

  58. Duda, Z.: A gradient method for application of chemotherapy models. J. Biol. Syst. 3, 3–11 (1995)

    Google Scholar 

Download references

Acknowledgements

We are grateful to four anonymous referees of this paper for their useful comments which helped us improve our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Ledzewicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledzewicz, U., Schättler, H. On the Role of the Objective in the Optimization of Compartmental Models for Biomedical Therapies. J Optim Theory Appl 187, 305–335 (2020). https://doi.org/10.1007/s10957-020-01754-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01754-2

Keywords

Mathematics Subject Classification