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We consider sensitivity of a semidefinite program under perturbations in the
case that the primal problem is strictly feasible and the dual problem is weakly
feasible. When the coefficient matrices are perturbed, the optimal values can change
discontinuously as explained in concrete examples. We show that the optimal value
of such a semidefinite program changes continuously under conditions involving the
behavior of the minimal faces of the perturbed dual problems. In addition, we
determine what kinds of perturbations keep the minimal faces invariant, by using
the reducing certificates, which are produced in facial reduction. Our results allow
us to classify the behavior of the minimal face of a semidefinite program obtained
from a control problem.
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1 Introduction

A semidefinite program is the problem of maximizing a linear function subject to the constraint
that an affine combination of matrices is positive semidefinite, where the constraint is called
a linear matrix inequality. Semidefinite programs have various applications, such as discrete
optimization, polynomial optimization and control problems (e.g. [1, 2] ). If the feasible sets
of a semidefinite program and the dual problem satisfy the constraint qualifications, both of
which are called strict feasibility, then interior point methods compute an approximation to
an exact solution efficiently; see, e.g., [3, 4].
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With a lack of strict feasibility, interior point methods are numerically unstable and often
give wrong optimal values [5-7]. To avoid such numerical instability, we can use the technique
called facial reduction, which finds the minimal face among the faces of the positive semidefinite
cone containing a feasible set. Such a face is called the minimal face of a semidefinite program
[8-11]. Then, we obtain a semidefinite program that satisfies strict feasibility and has the same
optimal value as the original problem. For applications of facial reduction, see the monograph
[12] and the references therein.

The first contribution of this paper is to provide sufficient conditions for continuity of the
optimal value under perturbations, in the case that the primal problem is strictly feasible and
the dual problem is feasible but not strictly feasible (Theorem 3.1). In that case, if we perturb
the constant matrix in the constraint of the primal problem, then it can be shown from the
general theory of convex analysis that the optimal value changes continuously [13, Corollary
7.5.1]. For more detailed analysis, see [14]. However if we also perturb the coefficient matrices
of the variables, then the optimal value may change discontinuously (Example 3.3, 3.4). Here
one of the keys to the phenomenon is the behavior of the minimal face of the dual problem
under the perturbation. By using concrete examples, we argue that our sufficient conditions
are hard to remove.

In the case that both of the primal and dual problems are strictly feasible, continuity of the
optimal value can be shown by Gol’̌shtĕın [15, Theorem 17]. Moreover if perturbations are
restricted on the constant matrices in the constraint of a semidefinite program, several authors
have studied stability of optimal solutions; see, e.g., [16-18]. Perturbation analysis of general
nonlinear programming has been studied thoroughly by Bonnans and Shapiro [19].

The second contribution is to obtain sufficient conditions for the perturbations to keep the
minimal face invariant (Proposition 4.3, 4.4). If the minimal face does not change under a
perturbation, then one of the conditions in Theorem 3.1 is satisfied. These results give a new
insight to perturbation analysis of semidefinite programs. Here we use reducing certificates,
which are generated by facial reduction to find the minimal face [10]. We remark that re-
ducing certificates are often obtained without solving semidefinite programs if the problems
are generated from combinatorial optimization problems, matrix completion problems, sums
of squares problems [12] or H∞ control problems [20]. Using these conditions, we investigate
a semidefinite program generated from an H∞ state feedback control problem.

The organization of this paper is as follows: preliminaries on semidefinite programs and
facial reduction are given in Section 2. In Section 3, we show the main result on continuity
of the optimal value of a semidefinite program. In Section 4, we give sufficient conditions on
the perturbations under which the minimal face does not change. We devote Section 5 to
applications to a control problem and numerical experiements. The conclusions are given in
Section 6.

2 Preliminaries on Semidefinite Program and Facial Reduction

2.1 Semidefinite Program

Let Sn, Sn+ and Sn++ be the sets of n×n symmetric matrices, positive semidefinite matrices and
positive definite matrices, respectively. In this paper, the primal semidefinite program (SDP)
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(P ) and its dual (D) are formulated as follows:

sup
y,Z

{
bT y : A0 −

m∑

k=1

ykAk = Z, y ∈ Rm, Z ∈ Sn+

}
, (P )

inf
X

{
A0 •X : Ak •X = bk (k ∈ [m]),X ∈ Sn+

}
, (D)

where A0, A1, . . . , Am ∈ Sn, b ∈ Rm, [m] := {1, . . . ,m}, and the inner product A •B is defined
by
∑n

i,j=1AijBij for A,B ∈ Sn.
Problem (P ) is said to be strictly feasible if there exists a feasible solution (y, Z) in (P ) such

that Z ∈ Sn++. Problem (D) is said to be strictly feasible if there exists a feasible solution X
in (D) such that X ∈ Sn++. We say that (P ) (resp. (D)) is weakly feasible, if (P ) (resp. (D))
is feasible but not strictly feasible.

Throughout this paper, we deal with only the case where both (P ) and its dual (D) are
feasible. We say that (P ) is nonsingular if both (P ) and (D) are strictly feasible and the
coefficient matrices A1, . . . , Am are linearly independent. We say that (P ) is singular if the
coefficient matrices are linear dependent or at least one of (P ) and (D) is weakly feasible.

2.2 Facial Reduction for SDP

The definition of a face of a general convex set is provided in [13]. The following lemma
provides results on a facial structure of Sn+, e.g. [21, 10].

Lemma 2.1. 1. Any face of Sn+ is either the empty set, {On×n}, Sn+, or
{
Q

(
O(n−r)×(n−r) O(n−r)×r

Or×(n−r) M

)
QT : M ∈ Sr+

}
,

where Q is an n× n nonsingular matrix.

2. The set Sn+ + F⊥ is closed for all faces F of Sn+, where F⊥ stands for the set {Z ∈ Sn :
Z •X = 0 (∀X ∈ F )}.

We call Q in Part 1 of Lemma 2.1 the nonsingular matrix associated to the face. It follows
from this property that for any U ∈ Sn+, the set Sn+ ∩ {U}⊥ is a face of Sn+, where {U}⊥ =
{X ∈ Sn : X • U = 0}. The property given in Part 2 of Lemma 2.1, which is called niceness,
implies that F ∗ = Sn+ + F⊥ for all faces F of Sn+. Here F ∗ is the dual cone of F , i.e. F ∗ =
{Z ∈ Sn : Z •X ≥ 0 (∀X ∈ F )}.

We define the minimal face of (D) and introduce facial reduction for (D). The minimal face
of (D) is defined as the intersection of all faces of Sn+ that contain the feasible region of (D).
We denote the minimal face by Fmin. The following result on the minimal face is obtained by
[10] and Part 2 in Lemma 2.1.

Lemma 2.2. [10, SDP version of Section 28.2.6 and Lemma 28.4] Assume that (P ) and (D)
are feasible. Let F be a face of Sn+ that contains Fmin and rintF be its relative interior. Then
the following are equivalent;

1. F 6= Fmin;
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2. There exists (y, U, V ) ∈ Rm × Sn+ × F⊥ such that

bT y = 0, −
∑

k∈[m]

ykAk = U + V and U + V 6∈ F⊥; (1)

3. {X ∈ rintF : Ak •X = bk (k ∈ [m])} = ∅.

If U satisfies the system in 2, then we have Fmin ⊆ F ∩ {U}⊥ ( F .

We call the above system (1) the discriminant system of the facial reduction for (D), and a
solution (y, U, V ) a reducing certificate.

The facial reduction for SDP in e.g. [10, 11] is a procedure based on Lemma 2.2. It generates
a sequence {Fi}si=0 of faces of Sn+ such that

F0 = Sn+, Fi = Fi−1 ∩ {U i}⊥ (i = 1, . . . , s) and Fs = Fmin.

Therefore, the iterative process can be expressed as

Sn+ = F0
(y1,U1,V 1)−→ F1

(y2,U2,V 2)−→ F2
(y3,U3,V 3)−→ · · · (y

s,Us,V s)−→ Fs = Fmin,

where we call {(yi, U i, V i)}si=1 a facial reduction sequence for (D). Here we note that U i, V i

need to satisfy U i + V i /∈ F⊥
i−1. Examples of facial reduction for SDP can be seen in e.g. [10,

Example 28.3] and [11, Example 3.1].
If the discriminant system (1) has multiple solutions, then we have flexibility in choosing a

facial reduction sequence for (D). Cheung and Wolkowicz [14, Proposition B.1] prove that any
two facial reduction sequences must be of the same length when a reducing certificate (y, U, V )
is selected at each iteration so that U has the maximal rank. The length is called the degree
of singularity for (D). The degree of singularity is used in [14] for the sensitivity analysis of
SDPs and in [22] for the error bounds.

Although we deal with only the feasible SDPs in the present paper, we introduce a study on
the infeasibility briefly. Infeasibility of SDP has two types as well as feasibility, i.e. strong infea-
sibility and weak infeasibility. The authors in [23, 24] discuss a characterization of infeasibility
by facial reduction.

3 Main Result

3.1 Stability of Singular Semidefinite Programs

We define the perturbed problems for (P ) by

sup
y,Z



b(t)T y :

∑

k∈[m]

ykAk(t) + Z = A0(t), y ∈ Rm, Z ∈ Sn+



 , (Pt)

inf
X

{
A0(t) •X : Ak(t) •X = bk(t) (k ∈ [m]), X ∈ Sn+

}
, (Dt)

where t ≥ 0, Ak(t) ∈ Sn, b(t) ∈ Rm are continuous at t = 0, and Ak(0) = Ak, b(0) = b.
In this subsection, the following conditions are imposed on the initial SDP:

Condition 1.
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(C1) (D) is feasible, and (P ) is strictly feasible;

(C2) A1, . . . , Am are linearly independent.

Then, by applying the facial reduction to (D), there exist a nonsingular matrix Q and r ∈ N
such that

inf
X3

{
QTA0Q •

(
O O
O X3

)
: QTAkQ •

(
O O
O X3

)
= bk (k ∈ [m]), X3 ∈ Sr+

}
(F (D)0)

has the same optimal value as (D), and F (D)0 is strictly feasible due to Lemma 2.2. Here, for
n× n matrix M , we denote by M3 the right bottom block of the partitioning

M =

(
M1 MT

2

M2 M3

)
, (2)

where the partitioning is uniquely determined by Lemma 2.1 for the minimal face of (D) with
M1 ∈ Sn−r,M2 ∈ Rr×(n−r),M3 ∈ Sr. We call M3 the third block of M associated to the
minimal face of (D). Then we can rewrite F (D)0 as follows:

inf
X

{
(QTA0Q)3 •X : (QTAkQ)3 •X = bk (k ∈ [m]),X ∈ Sr+

}
. (F (D))

For A = (aij)1≤i,j≤n ∈ Sn, we define vec(A) as the vectorization of A, i.e.,

vec(A) = (a11, a12, . . . , a1n, a21, a22, . . . , an1, . . . , ann)
T .

Let r(A1, . . . , Am) be the rank of the matrix (vec(A1), . . . , vec(Am)).
The following theorem is the main result of this paper.

Theorem 3.1. Under Condition 1, suppose that the minimal face Fmin of (D) can be written
as

Fmin =

{
Q

(
O(n−r)×(n−r) O(n−r)×r

Or×(n−r) X

)
QT : X ∈ Sr+

}

for some nonsingular matrix Q ∈ Rn×n and r ∈ N. In addition, we suppose that the set
{(A0(t), . . . , Am(t), b(t)) : 0 ≤ t ≤ δ} satisfies the following assumptions for some δ > 0:

1. (Dt) is feasible for each t ∈ [0, δ];

2. For each t ∈ [0, δ], there exists a nonsingular matrix Q(t) such that lim
t→0

Q(t) = Q, and

the minimal face of (Dt) can be written as

{
Q(t)

(
O(n−r)×(n−r) O(n−r)×r

Or×(n−r) X

)
Q(t)T : X ∈ Sr+

}
;

3. For each t ∈ [0, δ], we have

r
(
(Q(t)TA1(t)Q(t))3, . . . , (Q(t)TAm(t)Q(t))3

)
= r

(
(QTA1Q)3, . . . , (Q

TAmQ)3
)
,

where M3 is the third block of M ∈ Sn associated with the minimal face of (D).

Then the optimal value of (Dt) varies continuously at t = 0.
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The following is an immediate corollary.

Corollary 3.2. Under Condition 1, suppose that there exists δ > 0 such that (Dt) has a
nonempty feasible set and the same minimal face as (D), and

r
(
(QTA1(t)Q)3, . . . , (Q

TAm(t)Q)3
)
= r

(
(QTA1Q)3, . . . , (Q

TAmQ)3
)

for t ∈ [0, δ]. Then the optimal value of (Dt) varies continuously at t = 0.

Before proceeding to the proof, we investigate examples and show that the rank condition
or the condition on the face can not be removed from Theorem 3.1 and Corollary 3.2.

Example 3.3. The following example satisfies the condition on the face but does not satisfy
the rank condition. We set b = (0, 2, 2)T and

A0 =

(
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)
, A1 =

(
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)
, A2 =

(
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

)
, A3 =

(
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)

in (P ) and (D). Then A1, A2, A3 are linearly independent, (P ) is strictly feasible, and (D)

is weakly feasible. The optimal value is 0 and an optimal pair is X =

(
0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

)
, y =

(0, 0, 0), Z =

(
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)
. The minimal face of (D) is

Fmin =
{(

O2×2 O2×2

O2×2 X3

)
∈ S4+ : X3 ∈ S2+

}
.

If we perturb the matrices as

Ai(t) = Ai (i = 0, 1, 2), A3(t) =

(
0 1 0 0
1 0 0 0
0 0 1+t 0
0 0 0 1−t

)
,

then (Dt) remains feasible for each t > 0. In fact the feasible points of (Dt) can be written as

X =

(
0 0 0 0
0 0 0 0
0 0 1 α
0 0 α 1

)
(−1 ≤ α ≤ 1). Thus the minimal face of (Dt) is equal to Fmin for each t > 0.

Now the dimension of the span of the third blocks of the matrices A1, A2, A3 is 1, while that of
A1(t), A2(t), A3(t) is 2 for each t > 0. The optimal value of (Dt) is 1 and the optimal pairs

are X =

(
0 0 0 0
0 0 0 0
0 0 1 α
0 0 α 1

)
(−1 ≤ α ≤ 1), y =

(
β, 1+t

2t ,− 1
2t

)
, Z =

(−β 1

2t
0 0

1

2t
−β 0 0

0 0 0 0
0 0 0 0

)
(
β ≤ − 1

2t

)
for each

t > 0. Thus the optimal value changes discontinuously at t = 0.

Example 3.4. The following example satisfies the rank condition but does not satisfy the
condition on the face. We set b = (2, 2, 2, 0)T and

A0 =
(

0 0 0
0 0 0
0 0 1

)
, A1 =

(
0 0 0
0 1 0
0 0 0

)
, A2 =

(
0 0 0
0 0 1
0 1 0

)
, A3 =

(
1 0 0
0 0 1
0 1 0

)
, A4 =

(
0 0 1
0 0 0
1 0 0

)

in (P ) and (D). Then A1, . . . , A4 are linearly independent, (P ) is strictly feasible, and (D)

is weakly feasible. The optimal value is 1
2 , and the optimal pairs are X =

(
0 0 0
0 2 1
0 1 1

2

)
, y =

(
−1

4 ,
1
2 − y3, y3, 0

)
, Z =

(
−y3 0 0

0 1

4
− 1

2

0 − 1

2
1

)
, y3 ≤ 0. The minimal face of (D) is

Fmin =
{(

0 O1×2

O2×1 X3

)
∈ S3+ : X3 ∈ S2+

}
.
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If we perturb the matrices as

Ai(t) = Ai (i = 0, 1, 2), A3(t) =

(
1 0 0
0 0 1−t2

0 1−t2 0

)
, A4(t) =

(
0 0 1
0 −2t 0
1 0 0

)
,

then (Dt) is strictly feasible for each t > 0. In fact, X =
(

2t2 0 2t
0 2 1
2t 1 3

)
are strict feasible points of

(Dt). Thus the minimal face of (Dt) is S3+ for each t > 0. Since the span of the third blocks
of the matrices A1(t), . . . , A4(t) has the same basis as that of A1, . . . , A4 for each t > 0, the

rank condition is satisfied. However the optimal value of (Dt) is 2 with X =
(

2t2 t 2t
t 2 1
2t 1 2

)
, y =

(
2, 1

t2 − 1,− 1
t2 ,

1
t

)
, Z =

(
1

t2
0 − 1

t

0 0 0
− 1

t
0 1

)
being the unique optimal pair for each t > 0. Thus the

optimal value changes discontinuously at t = 0.

Example 3.5. Consider the same SDP as in Example 3.4. If we perturb the matrices as

Ai(t) = Ai (i = 0, 1, 4), A2(t) =
(

0 0 0
0 0 1
0 1 t

)
, A3(t) =

(
1 0 0
0 0 1
0 1 t

)
,

the minimal face of each perturbed problem is equal to Fmin in Example 3.4. Here the condition
on the face and the rank condition are satisfied for sufficiently small t > 0. Thus Theorem 3.1

guarantees the continuity of the optimal value. In fact, the optimal value of (Dt) is
2t+4−4

√
t+1

t2

and converges to 1
2 as t → 0. The optimal pairs are

X =

(
0 0 0

0 2 2
√

t+1−2
t

0 2
√

t+1−2
t

2t+4−4
√

t+1

t2

)
, y =

(
−

√

t+1 (t+2)−2 t−2
t3+t2

, β,−
√

t+1+β t2+(β−1) t−1
t2+t

, 0
)
,

Z =




√

t+1+β t2+(β−1) t−1

t2+t
0 0

0
√

t+1 (t+2)−2 t−2

t3+t2

√

t+1−t−1

t2+t

0
√

t+1−t−1

t2+t

1
√

t+1




for all β such that (1, 1)st element of Z is nonnegative.

Proof of Theorem 3.1. By the assumptions 1 and 2 in Theorem 3.1, the optimal value of (Dt)
is equal to

inf
X

{
(Q(t)TA0(t)Q(t))3 •X : (Q(t)TAk(t)Q(t))3 •X = bk(t) (k ∈ [m]),X ∈ Sr+

}
, (F (Dt))

and F (Dt) has a nonempty feasible set for each t ∈ [0, δ]. Thus if continuity of the optimal
value of F (Dt) at t = 0 is shown, then that of the optimal value of (Dt) is also shown. For
each t ∈ [0, δ], we have that the dual of F (Dt) is

sup
y,Z



b(t)T y :

∑

k∈[m]

yk(Q(t)TAk(t)Q(t))3 + Z = (Q(t)TA0Q(t))3, Z ∈ Sr+



 . (F (Dt)

′)

Then F (Dt) has the same optimal value as F (Dt)
′ because F (Dt) and F (Dt)

′ are strictly
feasible. In fact, strict feasibility of F (Dt) follows from the properties of facial reduction.
Since, for a strictly feasible point (ỹ, Z̃) of (Pt), (ỹ, (Q(t)T Z̃Q(t))3) is also a strictly feasible
point of F (Dt)

′, and hence F (Dt)
′ is strictly feasible. Therefore, the proof is done by showing

Theorem 3.6.
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Theorem 3.6. If both (P ) and (D) are strictly feasible, (Dt) is feasible, and r (A1(t), . . . , Am(t)) =
r (A1, . . . , Am) for each sufficiently small t > 0, then the optimal value of (Dt) varies contin-
uously at t = 0.

We will prove Theorem 3.6 in Subsection 3.2.

Remark 3.7. The coefficient matrices A1, . . . , Am in (P ) are usually assumed to be linearly
independent in the literature. However the coefficient matrices in F (D) can be linearly de-
pendent even if the initial SDP has linearly independent constraints. In fact, the coefficient
matrices of the reduced SDPs are linearly dependent in Examples 3.3, 3.4 and 3.5. Thus we
need to consider SDPs with linearly dependent coefficient matrices in Theorem 3.6.

As in Example 3.3 and 3.4, if r (A1(t), . . . , Am(t)) = r (A1, . . . , Am) and (D) is weakly
feasible, then the optimal value of (Dt) can vary discontinuously. We present an additional
example and show that the feasibility condition on (Dt) or the rank condition can not be
removed from Theorem 3.6.

Example 3.8. In (P ) and (D), we set b = (2, 2)T ,

A0 =

(
0 0
0 1

)
, A1 =

(
1 0
0 1

)
, A2 =

(
1 0
0 1

)
.

Then (P ) and (D) are strictly feasible. The optimal value is 0, and the optimal pairs are
X = ( 2 0

0 0 ) , y = (α,−α) , Z = ( 0 0
0 1 ) for any α ∈ R. However, if we take A2(t) =

(
1+t 0
0 1+t

)
,

then r(A1(t), A2(t)) = r(A1, A2) = 1 but (Dt) is infeasible. Therefore feasibility of (Dt) can
not be derived from the rank condition and needs to be assumed.

On the other hand, if we take A2(t) =
(
1+t 0
0 1−t

)
, then (Dt) is feasible and r(A1(t), A2(t)) = 2

for all t > 0. The optimal value is 1, and the optimal pair is X =
(

1 β
β 1

)
(−1 ≤ β ≤ 1), y =

(
1+t
2t ,− 1

2t

)
, Z = ( 0 0

0 0 ). Thus the optimal value varies discontinuously at t = 0 without the
rank condition.

3.2 Proof of Theorem 3.6

First, we recall an existence theorem for optimal solutions to an SDP with a focus on the linear
independence of the coefficient matrices.

Theorem 3.9. [25, Theorem 4.1 and Corollary 4.1] Suppose (P ) is strictly feasible and (D)
is feasible. Then (D) has a nonempty compact optimal set and the same optimal value as
(P ). Also, suppose that (P ) is feasible and (D) is strictly feasible. If the coefficient matrices
A1, . . . , Am are linearly independent, then (P ) has a nonempty compact optimal set and the
same optimal value as (D).

Remark 3.10. 1. Suppose that (P ) is feasible and (D) is strictly feasible. However, we
do not assume that the coefficient matrices A1, . . . , Am are linearly independent. Then
easy arguments show that (P ) has a nonempty optimal set and the same optimal value
as (D). Here we lost the compactness of the optimal set of (P ).

2. The set of the optimal solutions (y, Z) of (P ) is unbounded when the matrices A1, . . . , Am

are linearly dependent. However Lemma 3.13 bellow tells that the image of the optimal
solutions under the projection (y, Z) 7→ Z is bounded if (P ) and (D) are strictly feasible.

8



We note that we do not assume the linear independence of the coefficient matrices A1, . . . , Am

in the following arguments. We will use the symbol S(t) = (vec (A1(t)) , . . . , vec (Am(t))) ∈
Rn2×m and the symbol (S(t)T )† for the Moor-Penrose generalized inverse of S(t)T [26].

Lemma 3.11. Suppose X0 is a strictly feasible point of (D). If (Dt) is feasible and
r (A1(t), . . . , Am(t)) = r (A1, . . . , Am) for each t ∈ [0, δ], then there exist strictly feasible points
Xt of (Dt) for all sufficiently small t > 0 such that Xt → X0 as t → 0.

Proof. We can write the equality constraints of (D) and (Dt) by S(0)T vec(X) = b and
S(t)T vec(X) = b(t), respectively. Note that Ak(0) = Ak (k ∈ [m]), b = b(0). We set

vec(X0) = (I − (S(0)T )†S(0)T ) vec(X0) + (S(0)T )†b(0) and

vec(Xt) = (I − (S(t)T )†S(t)T ) vec(X0) + (S(t)T )†b(t).

Then we can check that S(0)T vec(X0) = b and S(t)T vec(Xt) = b(t), by using the fact that
S(t)T (S(t)T )†v = v if and only if v ∈ ImS(t)T . Since we have rank(S(t)) = r(A1(t), . . . , Am(t))
for all t ≥ 0, it follows from the assumption on the rank and [27, Theorem 5.2] that (S(t)T )† →
(S(0)T )† as t → 0. Therefore Xt → X0 as t → 0.

Remark 3.12. Unlike (Dt), we can easily prove that (Pt) have strictly feasible points (yt, Zt)
for all sufficiently small t ≥ 0 without assuming the rank condition. If (P ) is strictly feasible,
there exists y0 ∈ Rm such that A0 −∑k y0,kAk ∈ Sn++. Then we have that Zt := A0(t) −∑

k y0,kAk(t) ∈ Sn++ for all sufficiently small t ≥ 0. For each t > 0, (y0, Zt) is a strictly
feasible point of (Pt) and converges to a strict feasible point of (P ).

Let U(t) be the set of optimal solutions of (Dt), and

V(t) = {Z ∈ Sn : (y, Z) is optimal to (Pt) for some y ∈ Rm}.
Lemma 3.13. Suppose that (P ) is strictly feasible. If there exist strictly feasible points Xt of
(Dt) for all sufficiently small t ≥ 0 such that Xt → X0 as t → 0, then both sets U(t) and V(t)
are nonempty and uniformly bounded; i.e., there exist δ > 0 and compact sets C1, C2 such that

U(t) ⊂ C1, V(t) ⊂ C2 (0 ≤ t ≤ δ).

Proof. Since (Dt) and (Pt) have strictly feasible points, Remark 3.10 ensures that they have
the same optimal value and that U(t) and V(t) are nonempty for all sufficiently small t ≥ 0.
For a strictly feasible point (y0, Z0) of (P ), we set yt = y0 and Zt = A0(t) −

∑
k y0,kAk(t).

Then (yt, Zt) is a strictly feasible point of (Pt) for each small t ≥ 0 as explained in Remark
3.12. Let X and (y, Z) be arbitrary optimal solutions to (Dt) and (Pt) respectively. Since Xt

and (yt, Zt) are feasible points, we have

Ak(t) • (X −Xt) = 0,
∑

k∈[m]

(yk − yt,k)Ak(t) + Z − Zt = 0.

Then it follows that (X − Xt) • (Z − Zt) = 0 and hence that X • Zt + Xt • Z = Xt • Zt.
Moreover, positive semidefiniteness of Xt and Z guarantees that X • Zt ≤ Xt • Zt. Thus, by
positive definiteness of Zt, there exists ǫ > 0 such that for all sufficiently small t > 0, we have

‖X‖ ≤ Xt • Zt

λmin(Zt)
<

X0 • Z0 + ǫ

λmin(Z0)− ǫ
,

where λmin(M) is the smallest eigenvalue of a matrix M . Therefore, U(t) is uniformly bounded
for all sufficiently small t > 0. Similar arguments are applied to V(t).
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The following lemma is well-known, and the proof is omitted.

Lemma 3.14. Suppose that (D) has the same optimal value as (P ) and that both of (D) and
(P ) have optimal solutions. We define the function L : Sn × Rm → R as follows:

L(X, y) = A0 •X +
∑

k∈[m]

yk(bk −Ak •X).

Then X̃ and (ỹ, A0 −
∑

k ỹkAk) are optimal solutions of (D) and (P ) respectively if and only

if (X̃, ỹ) ∈ Sn+ × Rm satisfies

L(X̃, y) ≤ L(X̃, ỹ) ≤ L(X, ỹ), ∀(X, y) ∈ Sn+ × Rm.

Lemma 3.15. Let S be a matrix (vec(A1) . . . vec(Am)) ∈ Rn2×m. If (ỹ, Z̃) is an optimal
solution to (P ), then (y∗, Z̃) is also an optimal solution to (P ), where y∗ = S†(vec(A0) −
vec(Z̃)).

Proof. By feasibility of (ỹ, Z̃), we have Sỹ = vec(A0) − vec(Z̃). Since SS†v = v if and only
if v ∈ ImS, we see that Sy∗ = vec(A0) − vec(Z̃). Then we obtain y∗ ∈ ỹ + kerS. Here we
have kerS ⊂ (Span{b})⊥ since otherwise the optimal value of (P ) is infinity and hence this
contradicts finiteness of the optimal value. Thus bT y∗ = bT ỹ, and therefore, (y∗, Z̃) is optimal.

Lemma 3.16 plays an essential role in the proof of Theorem 3.6. Lemma 3.13 and 3.16
ensure outer semicontinuity of the set-valued map t 7→ U(t) × V(t); see [28, Section 5.B]. In
the following, B denotes the closed unit ball in Sn. We define, for X ∈ Sn and C ⊂ Sn,

d(X,C) = inf{‖X − Y ‖ : Y ∈ C}.

Lemma 3.16. Suppose that (P ) is strictly feasible. If there exist strictly feasible points Xt of
(Dt) for all sufficiently small t ≥ 0 such that Xt → X0 as t → 0, then for any ǫ > 0, there
exists η > 0 such that

U(t) ⊂ U(0) + ǫB, V(t) ⊂ V(0) + ǫB (0 ≤ t ≤ η).

Proof. By Remark 3.10, (Dt) and (Pt) have optimal solutions and the same optimal value.
Suppose that the conclusion is false. Then there exist ǫ > 0, {tj}, X(tj) ∈ U(tj) and Z(tj) ∈
V(tj) such that tj → 0 and

d (X(tj),U(0)) ≥ ǫ, d (Z(tj),V(0)) ≥ ǫ, (3)

for all j. Recall that S(t) denotes the matrix (vec(A1(t)) · · · vec(Am(t))). Let y(tj) = S(tj)
†(vec(A0)−

vec(Z(tj))). Then, Lemma 3.15 implies that the feasible solution (y(tj), Z(tj)) is optimal for
(Ptj ) for each j. We define

L(X, y, t) = A0(t) •X +
∑

k∈[m]

yk(bk(t)−Ak(t) •X).

Then, we note that L(X, y, 0) is equal to L(X, y) defined in Lemma 3.14. By Lemma 3.14, we
have

L(X(tj), y, tj) ≤ L(X(tj), y(tj), tj) ≤ L(X, y(tj), tj), ∀(X, y) ∈ Sn+ × Rm.
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Since Lemma 3.13 ensures that {(X(tj), Z(tj))} is uniformly bounded, we may assume that

(X(tj), y(tj), Z(tj)) → (X̃, ỹ, Z̃)

as j → ∞ for some (X̃, ỹ, Z̃). Thus we have

L(X̃, y, 0) ≤ L(X̃, ỹ, 0) ≤ L(X, ỹ, 0), ∀(X, y) ∈ Sn+ × Rm.

By applying Lemma 3.14 again, X̃ and (ỹ, Z̃) are optimal for (P ) and (D) respectively. This
contradicts the inequalities (3).

Proof of Theorem 3.6. By Lemma 3.11 and 3.16, we have that for any ǫ > 0 and X(t) ∈ U(t),
there exist η > 0 and X̃t ∈ U(0) such that for t ∈ [0, η],

|A0(t) •X(t)−A0 • X̃t| ≤ k1‖X(t) − X̃t‖+ k2‖A0(t)−A0(0)‖ < ǫ

for some k1, k2 > 0. This completes the proof of Theorem 3.6.

Corollary 3.17. If both (P ) and (D) are strictly feasible and A1, . . . , Am are linearly inde-
pendent, then the optimal value of (Dt) varies continuously at t = 0.

Proof. By strict feasibility and the linear independence condition, for all sufficiently small
t > 0, (Pt) and (Dt) are feasible, and the rank condition is satisfied.

4 Behavior of a Minimal Face under Perturbations

In this section, the behavior of a minimal face under perturbations is investigated. In particular,
we give criteria for perturbations to keep the minimal face invariant. We slightly simplify the
situations and consider the following perturbed problem:

inf
X

{
A0 •X : (Ak + Ek(t)) •X = bk (k ∈ [m]),X ∈ Sn+

}
, (Dt)

where Ek(t) = Ak(t) − Ak for all k ∈ [m]. We note Ek(t) → 0 as t → 0 since we assume
that Ak(t) are continuous at t = 0 and Ak(0) = Ak. Throughout this section, we assume the
following conditions:

Condition 2.

1. (D) is feasible, and (P ) is strictly feasible;

2. A1, . . . , Am are linearly independent;

3. (Dt) is feasible for each sufficiently small t > 0.

We say that {(Dt)}t≥0 satisfies the rank condition if there exist an associated nonsingular
matrix Q to the minimal face of (D) and δ > 0 such that for all t ∈ [0, δ],

r
(
(QT (A1+E1(t))Q)3, . . . , (Q

T (Am+Em(t))Q)3
)
= r

(
(QTA1Q)3, . . . , (Q

TAmQ)3
)
,

where the submatrix M3 for M ∈ Sn is determined by the minimal face of (D) as in (2). Here
we note that Q in the left hand side does not depend on t. We start with the following lemma.
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Lemma 4.1. Let Fmin and F t
min be the minimal faces of (D) and (Dt) respectively. Suppose

{(Dt)}t≥0 satisfies the rank condition. If there exists δ > 0 such that F t
min ⊂ Fmin for all

t ∈ [0, δ], we have F t
min = Fmin for all sufficiently small t > 0.

Proof. By Lemma 2.2, the reduced problem F (D) of (D) has a strictly feasible point which
solves

(
QTAkQ

)
3
• X = bk (k ∈ [m]),X ∈ Sr++ for some r > 0, where Q is an associated

nonsingular matrix to the minimal face Fmin of (D). For each t ∈ [0, δ], feasibility of (Dt) and
F t
min ⊂ Fmin imply that there exists X̃ ∈ Fmin such that (Ak + Ek(t)) • X̃ = bk (k ∈ [m]). It

follows from the representation of Fmin with Q that

(
QT (Ak + Ek(t))Q

)
3
•X = bk (k ∈ [m]), X ∈ Sr+

is feasible. Consider the following problem obtained by perturbing F (D):

inf
X

{(
QTA0Q

)
3
•X :

(
QT (Ak + Ek(t))Q

)
3
•X = bk (k ∈ [m]), X ∈ Sr+

}
. (4)

Here, F (D) has a strictly feasible point, (4) is feasible, and the rank condition is satisfied.
Thus Lemma 3.11 implies that for each sufficiently small t > 0, (4) has a strictly feasible point.
It means that {X ∈ rintFmin : (Ak +Ek(t)) •X = bk (k ∈ [m])} 6= ∅ for each sufficiently small
t > 0. Since Fmin is a face of Sn+ containing F t

min, we have Fmin = F t
min by Lemma 2.2.

Example 4.2. Lemma 4.1 does not hold without the assumption F t
min ⊂ Fmin. In Example

3.4, the perturbation is of the same type as this section is considering. Condition 2 and the
rank condition are satisfied, but the minimal faces F t

min of (Dt) are not equal to Fmin. Here
F t
min are not included in Fmin.

We first give simple sufficient conditions that can be shown easily.

Proposition 4.3. For a facial reduction sequence {(ŷi, Û i, V̂ i)}si=1 of (D), let the minimal
face of (D) be Fmin and K̂ = {k : ŷik = 0 (∀i = 1, . . . , s)}. Suppose that {(Dt)}t≥0 satisfies the

rank condition and Ek(t) = On×n (k /∈ K̂). Then the minimal faces of (Dt) are equal to Fmin

for all sufficiently small t > 0.

Proof. Let {Fi}si=1 be the sequence of faces generated by the facial reduction sequence {(ŷi, Û i, V̂ i)}si=1

of (D). Since Ek(t) = On×n for all k 6∈ K̂, we have

−
∑

k∈[m]

ŷik(Ak + Ek(t)) = −
∑

k∈[m]

ŷikAk = Û i + V̂ i

for i = 1, . . . , s. Thus {(ŷi, Û i, V̂ i)}si=1 is a facial reduction sequence of (Dt) up to the s-th
iteration. It is summarized as

(Dt) Sn+
(ŷ1,Û1,V̂ 1)−→ F1

(ŷ2,Û2,V̂ 2)−→ F2
(ŷ3,Û3,V̂ 3)−→ · · · (ŷ

s,Ûs,V̂ s)−→ Fs = Fmin.

Thus the minimal faces of (Dt) are contained in Fmin. In addition, since {(Dt)}t≥0 satisfies
the rank condition, it follows from Lemma 4.1 that the minimal faces of (Dt) are equal to Fmin

for sufficiently small t > 0.

Next, we will use the positive eigenvectors of reducing certificates to give sufficient conditions
for the minimal face to be invariant under a peturbation.
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Proposition 4.4. Let {(ŷi, Û i, V̂ i)}si=1 be a facial reduction sequence of (D), F0 = Sn+ and
F1, . . . , Fs be the generated faces. In addition, let

Li = Span{qqT : q is an eigenvector of Û iassociated with a positive eigenvalue}.

Suppose that {(Dt)}t≥0 satisfies the rank condition, and for each i = 1, . . . , s,

∑

k∈[m]

ŷikEk(t) + vi(t) ∈ Li

for some vi(t) ∈ F⊥
i−1 with vi(t) → On×n as t → 0. Then (Dt) have the same minimal face as

(D) for all sufficiently small t > 0.

Before proceeding to the proof, we present an example and a remark.

Example 4.5. The SDP in Example 3.4 has a facial reduction sequence consisting of only one

certificate (ŷ, Û , V̂ ) =
(
(0, 1,−1, 0)T ,

(
1 0 0
0 0 0
0 0 0

)
, O3×3

)
, and hence L1 = Span{Û}. If we perturb

the matrices as

A1(t) =
(

3t 4t 5t
4t 1 0
5t 0 t

)
, A2(t) =

(
0 3t 2t
3t 0 1
2t 1 t

)
, A3(t) =

(
1+4t 3t 2t
3t 0 1
2t 1 t

)
, A4(t) =

(
2t 5t 1+3t
5t t −t

1+3t −t 0

)
,

then the corresponding Ei(t) satisfy
∑4

k=1 ŷkEk(t) = −4tÛ ∈ L1. Thus the conditions of
Proposition 4.4 are satisfied, and the minimal face is invariant under the perturbation for
sufficiently small t > 0. In fact, since the minimal face of (Dt) is contained in Sn+ ∩ {Û}⊥

and

(
0 0 0
0 2−t 1−t/2
0 1−t/2 1

)
is a feasible point, the minimal face of (Dt) is equal to Fmin in Example

3.3. More generally, to apply Proposition 4.4, it suffices that we choose Ei(t) such that (Dt)
are feasible, the rank condition holds, and E2(t)− E3(t) = αtÛ for some αt ∈ R.

Remark 4.6. In particular, the inclusion in Proposition 4.4 holds if we have

−
∑

k∈[m]

ŷikEk(t) ∈ αi(t)Û i + F⊥
i−1,

with αi(t) → 0 as t → 0 for each i = 1, . . . , s.

Proof of Proposition 4.4. Since {(ŷi, Û i, V̂ i)}si=1 is a facial reduction sequence of (D), we have

that Û i ∈ Sn+, V̂
i ∈ F⊥

i−1 and that −∑k ŷ
i
kAk = Û i + V̂ i /∈ F⊥

i−1 for each i = 1, . . . , s.

Let us fix i. Let {ql} be the set of the eigenvectors of Û i that are associated with positive
eigenvalues, orthogonal to each other, and ‖ql‖ = 1. Then every matrix in Li can be written
as a linear combination of qlql

T . By the assumption, there exist αl(t) ∈ R and v(t) ∈ F⊥
i−1

such that −∑k ŷ
i
kEk(t) =

∑
l αl(t)qlql

T + v(t) and v(t) → On×n. Since
∑

k ŷ
i
kEk(t) → On×n

as t → 0 and {qlqTl } is linearly independent, we have αl(t) → 0 for each l. We set

U i = Û i +
∑

l

αl(t)qlql
T , V i = V̂ i + v(t)

Then V i ∈ F⊥
i−1. Since Û i can be written as

∑
l λlqlql

T , where λl is the positive eigenvalue of

Û i corresponding to ql, we see that U i ∈ Sn+ for all sufficiently small t > 0. Thus we have

−
∑

k

ŷik (Ak + Ek(t)) = Û i + V̂ i +
∑

ℓ

αℓ(t)qℓq
T
ℓ + v(t) = U i + V i.
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Since Û i + V̂ i /∈ F⊥
i−1 by the definition of the facial reduction sequence and F⊥

i−1 is closed, we
also have U i + V i /∈ F⊥

i−1 for all sufficiently small t > 0. In addition, we obtain that

Fi−1 ∩
{
U i
}⊥

= Fi−1 ∩
{
Û i +

∑

l

αl(t)qlq
T
l

}⊥

= Fi−1 ∩
{∑

l

(λl + αl(t))qlq
T
l

}⊥
= Fi−1 ∩

{
Û i
}⊥

= Fi.

Therefore, we have shown that {U i}si=1 also generates the faces F1, . . . , Fs and that (ŷi, U i, V i)
is a reducing certificate of (Dt) at the i-th iteration for each i = 1, . . . , s. Thus Fs contains
the minimal face of (Dt) for each sufficiently small t > 0. In addition, since {(Dt)}t≥0 satisfies
the rank condition, Lemma 4.1 implies that the minimal face of (Dt) is equal to Fs for each
sufficiently small t > 0.

5 Application to a Control Problem

5.1 A Singular SDP in H∞ State Feedback Control Problem

We present a singular SDP arising from H∞ state feedback control problem. The H∞ control
problem is one of the most successful applications of SDP and is the problem for designing
a controller that achieves stabilization with some guaranteed performance based on the H∞
norm. In particular, the H∞ state feedback control problem is a special case of the H∞ control
problem. See, e.g., [29, 2] for the detail on the SDP formulation.

In this section, we deal with the following SDP problem:

sup



−γ :



−He(AY1 +B2Y2)
−C1Y1 −D12Y2 γI2

−BT
1 −DT

11 γI2


 ∈ S6+,

Y1 ∈ S2+,
Y2 ∈ R2×2,
γ ∈ R



 , (P0)

where He(X) = X +XT for X ∈ Rn×n and the blanks in the matrices stand for the transpose
of the lower triangular block part. Also, the matrices A, B1, B2, C1, D11 and D12 are defined
as follows:

(
A B1 B2

C1 D11 D12

)
=




−1 −1 −1 −1 0
1 0 −1 0 1

2 −1 −1 0 2
−1 2 −1 0 −1


 . (5)

Its dual can be formulated as follows:

inf




−




O
O O
BT

1 DT
11 O


 • Z :

He(ATZ11 + CT
1 Z21) ∈ S2+,

Ip • Z22 + Im1
• Z33 = 1,

BT
2 Z11 +DT

12Z21 = O,
Z = (Zij)1≤i,j≤3 ∈ S6+





. (6)

To adjust our SDP problem of interest to the form of (P ), we define the coefficient matrices

Ak (k ∈ [6] ∪ {0}) and vector b by Ak =
(

Ak,1 O
O Ak,2

)
and b =

(
0 0 0 0 0 −1

)T
, where

Ak,1 ∈ S6 and Ak,2 ∈ S2 for all k. Furthermore, we rewrite variables Y1, Y2, γ as follows:

Y1 =

(
y1 y2
y2 y3

)
, Y2 =

(
y4 y5

)
, y6 = γ.
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It follows from [20, Theorems 3.3 and 3.5] that (P0) is strictly feasible but its dual problem is
weakly feasible. Thus we can say that (P0) is singular.

We compare computational results on (P0) with the following three perturbed SDPs for
(P0): For ǫ =1.0e-16,

(P1) SDP obtained by perturbing the (2, 2)nd element of A5,1 into −2(1 + ǫ),

(P2) SDP obtained by perturbing the (2, 3)rd and (3, 2)nd elements in A5,1 into −2(1 + ǫ),
and

(P3) SDP obtained by perturbing the (2, 4)th and (4, 2)nd elements of A5,1 into 1 + ǫ.

We apply SDPA-GMP [30] to solve (P0) to (P3) with stopping tolerances δ (δ=1.0e-10, 1.0e-30
and 1.0e-50) and set the floating point computation to approximately 300 significant digits.
We set maxIteration = 10000 and betaStar = betaBar = gammaStar = 0.5 for parameters
of SDPA-GMP. See [30] for more details on parameters. Table 1 shows the numerical results.
We observe the following:

Table 1: Computed values for (P0), its perturbed problems (P1), (P2) and (P3)

δ =1.0e-10 δ =1.0e-30 δ =1.0e-50

(P0) -2.2360679775444764 -2.2360679774997897 -2.2360679774997897
(P1) -2.2360072694172072 -2.1078335768712432 -1.4142135623730950
(P2) -2.2360072694172055 -2.0000000000000000 -2.0000000000000000
(P3) -2.2360072665294605 -1.4142135623730950 -1.4142135623730950

• The computed values of (P0) are almost same for all δ, whereas the values for perturbed
problems (P1), (P2) and (P3) are different. These significant differences imply that one
needs to choose suitable tolerances δ in order to use the floating point computation with
longer significant digits for singular SDPs.

• We can verify that the optimal value of (P0) is −
√
5, while the optimal value of the

perturbed problem (P1) is −
√
2. These differences show that a small perturbation of

coefficient matrices Ak in (P0) may yield a significant change of the optimal value of
(P0).

5.2 Behavior of Minimal Faces under Perturbations for Our Example

We show that matrix-wise perturbations make the minimal face of the dual problem of (P0)
invariant or full-dimensional, i.e., S8+.

Let A = ( a11 a12
a21 a22 ), B2 =

(
b1
b2

)
, C1 = ( c11 c12

c21 c22 ), D12 =
(

d11
d21

)
, and let B1 and D11 be the same

matrices as in (5). Then the first constraint in (P0) means that
















−2a11y1 − 2a12y2 − 2b1y4
−a21y1 − (a11 + a22)y2 − a12y3 − b2y4 − b1y5 −2a21y2 − 2a22y3 − 2b2y5

−c11y1 − c12y2 − d1y4 −c11y2 − c12y3 − d1y5 y6

−c21y1 − c22y2 − d2y4 −c21y2 − c22y3 − d2y5 0 y6
1 1 1 1 y6
1 0 0 0 0 y6
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is contained in S6+. The related part with a11 in the above matrix can be extracted as

a11




−2y1 −y2 0 0 0 0
−y2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 = a11y1




−2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


+ a11y2




0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




=: a11(y1E1,1 + y2E2,1).

Since a perturbation on a11 affects the coefficient matrices of y1 and y2, the corresponding

perturbing matrices are E1(t) =
(

tE1,1 O
O O2×2

)
, E2(t) =

(
tE2,1 O
O O2×2

)
and Ek(t) = O8×8 (k =

3, . . . , 6). We remark that we need to consider block matrices with two blocks for the per-
turbation because the coefficient matrices for y1 also appear in the constraint Y1 ∈ S2+ of
(P0).

Consider the problem (Dt) perturbed with {Ek(t)}. Then one can verify that the length of
the facial reduction sequence for (Dt) is one and that it is {(y, U, V )}, where





y = (1, 0, 0,−1, 0, 0)T , U =

(
U1 O
O U2

)
, V =

(
V1 O
O V2

)
,

V1 = O6×6, V2 = O2×2, U1 =

(
1 0T

0 O5×5

)
, U2 =

(
1 0
0 0

)
.

(7)

Let e1 ∈ R6 and f1 ∈ R2 be the unit vectors whose first entry is 1 and others are zero. Then
the positive eigenvalues of U are 2, 1, and the associated eigenvectors are (e1, 0

T
2 )

T , (0T6 , f
T
1 )

T

respectively. Here 0p is the p-dimensional zero vector for a given positive integer p. Since we
have that

− (1 ·E1(t) + 0 · E2(t)) ∈ Span
{(

e1e1T O
O O2×2

)
,
(

O6×6 O

O f1f1
T

)}

and that {(Dt)}t≥0 satisfies the rank condition, Proposition 4.4 implies that this perturbation
does not change the minimal face of the dual problem.

We can apply similar arguments to see behavior of the minimal face of the dual problem for
the other perturbations and observe the followings:

• The minimal face is invariant under the matrix-wise perturbation with respect to a11,
a12, a22, c12, c22 and b1. The optimal value of (Dt) changes continuously at t = 0 due to
Theorem 3.1.

• The other perturbations, i.e. a21, c11, c21, b2 d1 and d2, make the minimal face of the dual
problem to be S8+, which implies that the perturbed problem is strictly feasible. However,
we have numerically confirmed that the optimal value of (Dt) also varies continuously in
this case. It is a future study to find other conditions that ensure the continuity of the
optimal value under any matrix-wise perturbations.

• Hence if we perturb matrices A, B2, C1 and D12 in the structured form, the minimal
face may be different, but can not be smaller.

6 Conclusions

We consider perturbations of the coefficient matrices of a semidefinite program, in the case that
the primal problem is strictly feasible and the dual problem is weakly feasible. We give sufficient
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conditions for continuity of the optimal value. These conditions involve the behavior of the
minimal faces of the perturbed dual problems and the submatrices of the coefficient matrices
associated with the minimal faces. By using examples, it is argued that these conditions
are hard to remove. We further obtain sufficient conditions for the perturbations to keep
the minimal face invariant. A facial reduction sequence, which is obtained in the process
of facial reduction, plays the central role. Then our results are applied to a semidefinite
program obtained from an H∞ control problem. By presenting numerical experiments with
interior point methods, we also discuss the importance of computations with arbitrary precision
arithmetic, together with an appropriate parameter for the stopping criteria, in order to obtain
an approximation to the optimal value of a singular semidefinite program.

In the future work, it is worth considering to use a facial reduction sequence to analyze
other properties of a semidefinite program. In addition, it may be interesting to find combi-
natorial structures in the elements of perturbing matrices that preserve the minimal face of a
semidefinite program.
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[15] Gol’̌shtĕın, E.G.: Theory of Convex programming, Translations of Mathematical Mono-
graphs, 36, American Mathematical Society, Providence (1972)

[16] Sturm, J. F., Zhang, S.: On sensitivity of central solutions in semidefinite programming,
Math Program, 90, 205-227 (2001)

[17] Yildirim, E. A., Todd, M. Todd.: Sensitivity analysis in linear programming and semidef-
inite programming using interior-point methods, Math Program, 90, 229-261 (2001)

[18] Mohammad-Nezhad, A., Terlaky, T.: Parametric analysis of semidefinite optimization,
Optimization, 69, 187-216 (2020)

[19] Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems, Springer,
New York (2000)

[20] Waki, H., Sebe, N.:Application of Facial Reduction to H∞ State Feedback Control Prob-
lem, Int. J. Control, 92, 303-316 (2019)

[21] Borwein, J.M., Wolkowicz, H.:Characterization of optimality for the abstract convex pro-
gram with finite-dimensional range, J. Austral. Math. Soc. Ser. A, 30, 390-411 (1981)

[22] Sturm, J.F.: Error bounds for linear matrix inequalities, SIAM J. Optim., 10, 4, 1228-1248
(2000)

[23] Liu, M., Pataki, G.: Exact duals and short certificates of infeasibility and weak infeasibility
in conic linear programming, Math Program, 167, 435-480 (2018)

[24] Lourenço, B.F., Muramatsu, M., Tsuchiya, T.: A structural geometrical analysis of weakly
infeasible sdps, J. Oper. Res. Soc. Japan, 59, 241-257 (2016)

[25] Todd, M.: Semidefinite optimization, Acta Numer., 10, 515-560 (2001)

18



[26] Horn, R.A., Johnson, C.R.: Matrix analysis; Second Edition, Cambridge University Press,
New York (2013)

[27] Stewart, G.W.: On the continuity of the Generalized Inverse, SIAM J. Appl. Math., 17,
1, 33-45 (1969)

[28] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Springer-Verlag, Berlin (1998)

[29] Iwasaki, T., Skelton, R.E.: All Controllers for the General H∞ Control Problem: LMI
Existence Conditions and State Space Formulas, Automatica, 30, 8, 1307-1317 (1994)

[30] Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Ya-
mashita, M.: SDPA (SemiDefinite Programming Algorithm) and SDPA-GMP User’s Man-
ual – Version 7.1.1, Tokyo Institute of Technology, (2008)

19


	1 Introduction
	2 Preliminaries on Semidefinite Program and Facial Reduction
	2.1 Semidefinite Program
	2.2 Facial Reduction for SDP

	3 Main Result
	3.1 Stability of Singular Semidefinite Programs
	3.2 Proof of Theorem 3.6

	4 Behavior of a Minimal Face under Perturbations
	5 Application to a Control Problem
	5.1 A Singular SDP in H State Feedback Control Problem
	5.2 Behavior of Minimal Faces under Perturbations for Our Example

	6 Conclusions
	7 Acknowledgements

