Skip to main content
Log in

Minimal Time Impulse Control Problem of Semilinear Heat Equation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The paper is concerned with a kind of minimal time impulse control problem for a semilinear heat equation. We study the existence of optimal controls of this problem, establish a nontrivial Pontryagin’s maximum principle for this problem and then derive the bang–bang property of optimal controls. Based on the existence and the bang–bang property of optimal controls, we discuss the equivalence of the minimal time impulse control problem and its corresponding minimal norm impulse control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston (1993)

    MATH  Google Scholar 

  2. Fattorini, H.O.: Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Problems. North-Holland Mathematics Studies, vol. 201. Elsevier, Amsterdam (2005)

    Google Scholar 

  3. Kunisch, K., Wang, L.: Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints. J. Math. Anal. Appl. 359, 114–130 (2012)

    Article  MathSciNet  Google Scholar 

  4. Kunisch, K., Wang, L.: Time optimal control of the heat equation with pointwise control constraints. ESAIM Control Optim. Calc. Var. 19, 460–485 (2013)

    Article  MathSciNet  Google Scholar 

  5. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  6. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    Book  Google Scholar 

  7. Phung, K.D., Wang, L., Zhang, C.: Bang–bang property for time optimal control of semilinear heat equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 477–499 (2014)

    Article  MathSciNet  Google Scholar 

  8. Tucsnak, M., Wang, G., Wu, C.: Perturbations of time optimal control problems for a class of abstract parabolic systems. SIAM J. Control Optim. 54, 2965–2991 (2016)

    Article  MathSciNet  Google Scholar 

  9. Wang, G., Xu, Y., Zhang, Y.: Attainable subspaces and the bang–bang property of time optimal controls for heat equations. SIAM J. Control Optim. 53, 592–621 (2015)

    Article  MathSciNet  Google Scholar 

  10. Wang, L., Yan, Q.: Bang–bang property of time optimal null controls for some semilinear heat equation. SIAM J. Control Optim. 54, 2949–2964 (2016)

    Article  MathSciNet  Google Scholar 

  11. Wang, L., Yan, Q.: Minimal time control of exact synchronization for parabolic systems. arXiv:1803.00244v1

  12. Duan, Y., Wang, L.: Minimal norm control problem governed by semilinear heat equation with impulse control. J. Optim. Theory Appl. 184, 400–418 (2020)

    Article  MathSciNet  Google Scholar 

  13. Duan, Y., Wang, L., Zhang, C.: Minimal time impulse control of an evolution equation. J. Optim. Theory Appl. 183, 902–919 (2019)

    Article  MathSciNet  Google Scholar 

  14. Trélat, E., Wang, L., Zhang, Y.: Impulse and sampled-data optimal control of heat equations, and error estimates. SIAM J. Control Optim. 54, 2787–2819 (2016)

    Article  MathSciNet  Google Scholar 

  15. Yang, T.: Impulse Control Theory. Lecture Notes in Control and Information Sciences. Springer, Berlin (2001)

    Google Scholar 

  16. Yong, J., Zhang, P.: Necessary conditions of optimal impulse controls for distributed parameter systems. Bull. Austr. Math. Soc. 45, 305–326 (1992)

    Article  MathSciNet  Google Scholar 

  17. Bellman, R., Glicksberg, I., Gross, O.: On the “bang–bang’’ control problem. Q. Appl. Math. 14, 11–18 (1956)

    Article  MathSciNet  Google Scholar 

  18. Boltyanskiĭ, V.G., Gamkrelidz, R.V., Pontryagin, L.S.: On the theory of optimal processes (Russian). Dokl. Akad. Nauk SSSR. 110, 7–10 (1956)

    MathSciNet  Google Scholar 

  19. Pontryagin, L.S., Boltyanskiĭ, V.G., Gamkrelidz, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes. In: Neustadt, L.W. (ed.) (Interscience Publishers Wiley, New York, London, 1962) [Translated from the Russian by K. N. Trirogoff]

  20. Arada, N., Raymond, J.P.: Time optimal problems with Dirichlet boundary controls. Discrete Contin. Dyn. Syst. 9, 1549–1570 (2003)

    Article  MathSciNet  Google Scholar 

  21. Barbu, V.: Optimal Control of Variational Inequalities. Pitman, Boston (1984)

    MATH  Google Scholar 

  22. Lohéac, J., Tucsnak, M.: Maximum principle and bang–bang property of time optimal controls for Schrodinger-type systems. SIAM J. Control Optim. 51, 4016–4038 (2013)

    Article  MathSciNet  Google Scholar 

  23. Raymond, J.P., Zidani, H.: Pontryagin’s prinicple for time-optimal problems. J. Optim. Theory Appl. 101, 375–402 (1999)

    Article  MathSciNet  Google Scholar 

  24. Wang, G., Zuazua, E.: On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J. Control Optim. 50, 2938–2958 (2012)

    Article  MathSciNet  Google Scholar 

  25. Gozzi, F., Loreti, P.: Regularity of the minimum time function and minimum energy problems: the linear case. SIAM J. Control Optim. 37, 1195–1221 (1999)

    Article  MathSciNet  Google Scholar 

  26. Lü, X., Wang, L., Yan, Q.: Computation of time optimal control problems governed by linear ordinary differential equations. J. Sci. Comput. 73, 1–25 (2017)

    Article  MathSciNet  Google Scholar 

  27. Qin, S., Wang, G.: Equivalence between minimal time and minimal norm control problems for the heat equation. SIAM J. Control Optim. 56, 981–1010 (2018)

    Article  MathSciNet  Google Scholar 

  28. Yu, H.: Equivalence of minimal time and minimal norm control problems for semilinear heat equations. Syst. Control Lett. 73, 17–24 (2014)

    Article  MathSciNet  Google Scholar 

  29. Wang, G., Wang, L., Xu, Y., Zhang, Y.: Time Optimal Control of Evolution Equations. Birkhäuser, Cham (2018)

    Book  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant 11771344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Wang.

Additional information

Communicated by Michael Hinze.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L. Minimal Time Impulse Control Problem of Semilinear Heat Equation. J Optim Theory Appl 188, 805–822 (2021). https://doi.org/10.1007/s10957-020-01807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01807-6

Keywords

Mathematics Subject Classification