Abstract
The paper is concerned with a kind of minimal time impulse control problem for a semilinear heat equation. We study the existence of optimal controls of this problem, establish a nontrivial Pontryagin’s maximum principle for this problem and then derive the bang–bang property of optimal controls. Based on the existence and the bang–bang property of optimal controls, we discuss the equivalence of the minimal time impulse control problem and its corresponding minimal norm impulse control problem.
Similar content being viewed by others
References
Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston (1993)
Fattorini, H.O.: Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Problems. North-Holland Mathematics Studies, vol. 201. Elsevier, Amsterdam (2005)
Kunisch, K., Wang, L.: Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints. J. Math. Anal. Appl. 359, 114–130 (2012)
Kunisch, K., Wang, L.: Time optimal control of the heat equation with pointwise control constraints. ESAIM Control Optim. Calc. Var. 19, 460–485 (2013)
Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)
Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)
Phung, K.D., Wang, L., Zhang, C.: Bang–bang property for time optimal control of semilinear heat equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 477–499 (2014)
Tucsnak, M., Wang, G., Wu, C.: Perturbations of time optimal control problems for a class of abstract parabolic systems. SIAM J. Control Optim. 54, 2965–2991 (2016)
Wang, G., Xu, Y., Zhang, Y.: Attainable subspaces and the bang–bang property of time optimal controls for heat equations. SIAM J. Control Optim. 53, 592–621 (2015)
Wang, L., Yan, Q.: Bang–bang property of time optimal null controls for some semilinear heat equation. SIAM J. Control Optim. 54, 2949–2964 (2016)
Wang, L., Yan, Q.: Minimal time control of exact synchronization for parabolic systems. arXiv:1803.00244v1
Duan, Y., Wang, L.: Minimal norm control problem governed by semilinear heat equation with impulse control. J. Optim. Theory Appl. 184, 400–418 (2020)
Duan, Y., Wang, L., Zhang, C.: Minimal time impulse control of an evolution equation. J. Optim. Theory Appl. 183, 902–919 (2019)
Trélat, E., Wang, L., Zhang, Y.: Impulse and sampled-data optimal control of heat equations, and error estimates. SIAM J. Control Optim. 54, 2787–2819 (2016)
Yang, T.: Impulse Control Theory. Lecture Notes in Control and Information Sciences. Springer, Berlin (2001)
Yong, J., Zhang, P.: Necessary conditions of optimal impulse controls for distributed parameter systems. Bull. Austr. Math. Soc. 45, 305–326 (1992)
Bellman, R., Glicksberg, I., Gross, O.: On the “bang–bang’’ control problem. Q. Appl. Math. 14, 11–18 (1956)
Boltyanskiĭ, V.G., Gamkrelidz, R.V., Pontryagin, L.S.: On the theory of optimal processes (Russian). Dokl. Akad. Nauk SSSR. 110, 7–10 (1956)
Pontryagin, L.S., Boltyanskiĭ, V.G., Gamkrelidz, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes. In: Neustadt, L.W. (ed.) (Interscience Publishers Wiley, New York, London, 1962) [Translated from the Russian by K. N. Trirogoff]
Arada, N., Raymond, J.P.: Time optimal problems with Dirichlet boundary controls. Discrete Contin. Dyn. Syst. 9, 1549–1570 (2003)
Barbu, V.: Optimal Control of Variational Inequalities. Pitman, Boston (1984)
Lohéac, J., Tucsnak, M.: Maximum principle and bang–bang property of time optimal controls for Schrodinger-type systems. SIAM J. Control Optim. 51, 4016–4038 (2013)
Raymond, J.P., Zidani, H.: Pontryagin’s prinicple for time-optimal problems. J. Optim. Theory Appl. 101, 375–402 (1999)
Wang, G., Zuazua, E.: On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J. Control Optim. 50, 2938–2958 (2012)
Gozzi, F., Loreti, P.: Regularity of the minimum time function and minimum energy problems: the linear case. SIAM J. Control Optim. 37, 1195–1221 (1999)
Lü, X., Wang, L., Yan, Q.: Computation of time optimal control problems governed by linear ordinary differential equations. J. Sci. Comput. 73, 1–25 (2017)
Qin, S., Wang, G.: Equivalence between minimal time and minimal norm control problems for the heat equation. SIAM J. Control Optim. 56, 981–1010 (2018)
Yu, H.: Equivalence of minimal time and minimal norm control problems for semilinear heat equations. Syst. Control Lett. 73, 17–24 (2014)
Wang, G., Wang, L., Xu, Y., Zhang, Y.: Time Optimal Control of Evolution Equations. Birkhäuser, Cham (2018)
Acknowledgements
This work was partially supported by the National Natural Science Foundation of China under Grant 11771344.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Michael Hinze.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, L. Minimal Time Impulse Control Problem of Semilinear Heat Equation. J Optim Theory Appl 188, 805–822 (2021). https://doi.org/10.1007/s10957-020-01807-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-020-01807-6