Abstract
A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre–Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh interval. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Furthermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth.








Similar content being viewed by others
References
Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM Press, Philadelphia (2010)
Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)
Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide optimization. Comput. Chem. Eng. 33(3), 575–582 (2008)
Jain, D., Tsiotras, P.: Trajectory optimization using multiresolution techniques. J. Guid. Control Dyn. 31(5), 1424–1436 (2008)
Zhao, Y., Tsiotras, P.: Density functions for mesh refinement in numerical optimal control. J. Guid. Control Dyn. 34(1), 271–277 (2011)
Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995)
Elnagar, G.N., Razzaghi, M.: Short communication: a collocation type method for linear quadratic optimal control problems. Optim. Control Appl. Methods 18(3), 227–235 (1997)
Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. J. Guid. Control Dyn. 24(2), 270–277 (2001)
Darby, C.L., Hager, W.W., Rao, A.V.: An \(hp\)-adaptive pseudospectral method for solving optimal control problems. Optim. Control Appl. Methods 32(4), 476–502 (2011)
Darby, C.L., Hager, W.W., Rao, A.V.: Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecr. Rockets 48(3), 433–445 (2011)
Patterson, M.A., Hager, W.W., Rao, A.V.: A \(ph\) mesh refinement method for optimal control. Optim. Control Appl. Methods 36(4), 398–421 (2015)
Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement for optimal control using nonsmoothness detection and mesh size reduction. J. Frankl. Inst. 352(10), 4081–4106 (2015)
Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using decay rates of Legendre polynomial coefficients. IEEE Trans. Control Syst. Technol. 26(4), 1475–1483 (2018)
Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas Jr., A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)
Fornberg, B.: A Practical Guide to Pseudospectral Methods, vol. 1. Cambridge University Press, Cambridge (1998)
Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10. SIAM, Philadelphia (2000)
Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control Dyn. 29(6), 1435–1440 (2006)
Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T.: Algorithm 902: Gpops, a matlab software for solving multiple-phase optimal control problems using the Gauss pseudospectral method. ACM Trans. Math. Softw. 37(2), 22 (2010)
Kameswaran, S., Biegler, L.T.: Convergence rates for direct transcription of optimal control problems using collocation at Radau points. Comput. Optim. Appl. 41(1), 81–126 (2008)
Garg, D., Patterson, M.A., Darby, C.L., Francolin, C., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems via a Radau pseudospectral method. Comput. Optim. Appl. 49(2), 335–358 (2011)
Garg, D., Hager, W.W., Rao, A.V.: Pseudospectral methods for solving infinite-horizon optimal control problems. Automatica 47(4), 829–837 (2011)
Garg, D., Patterson, M.A., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010)
Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a Radau collocation method applied to unconstrained optimal control (2015). arXiv:1508.03783
Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a Gauss collocation method applied to unconstrained optimal control. J. Optim. Theory Appl. 169(3), 801–824 (2016)
Hager, W.W., Hou, H., Rao, A.V.: Lebesgue constants arising in a class of collocation methods. IMA J. Numer. Anal. 37(4), 1884–1901 (2017)
Hager, W.W., Liu, J., Mohapatra, S., Rao, A.V., Wang, X.-S.: Convergence rate for a Gauss collocation method applied to constrained optimal control. SIAM J. Control Optim. 56, 1386–1411 (2018)
Hager, W.W., Hou, H., Mohapatra, S., Rao, A.V., Wang, X.-S.: Convergence rate for a Radau hp-collocation method applied to constrained optimal control. Comput. Optim. Appl. 74, 274–314 (2019)
Chen, W., Du, W., Hager, W.W., Yang, L.: Bounds for integration matrices that arise in Gauss and Radau collocation. Comput. Optim. Appl. 74(1), 259–273 (2019)
Bryson, A.E., Ho, Y.: Applied Optimal Control: Optimization, Estimation, and Control. Hemisphere Publishing Corporation, Washington (1975)
Darby, C.L.: HP-Pseudospectral Method for Solving Continuous-Time Nonlinear Optimal Control Problems. Ph.D. thesis, University of Florida (2011)
Guerra, M., Sarychev, A.: Measuring singularity of generalized minimizers for control-affine problems. J. Dyn. Control Syst. 15(2), 177–221 (2009)
Li, S., Zhao, R., Zhang, Q.: Optimization method for solving bang–bang and singular control problems. J. Control Theory Appl. 10(4), 559–564 (2012)
Martinon, P., Bonnans, F., Laurent-Varin, J., Trélat, E.: Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher. J. Guid. Control Dyn. 32(1), 51–55 (2009)
Cuthrell, J.E., Biegler, L.T.: On the optimization of differential-algebraic process systems. AIChE J. 33(8), 1257–1270 (1987)
Cuthrell, J.E., Biegler, L.T.: Simultaneous optimization and solution methods for batch reactor control profiles. Comput. Chem. Eng. 13(1–2), 49–62 (1989)
Chen, W., Shao, Z., Biegler, L.T.: A bilevel NLP sensitivitybased decomposition for dynamic optimization with moving finite elements. AIChE J. 60(3), 966–979 (2014)
Chen, W., Biegler, L.T.: Nested direct transcription optimization for singular optimal control problems. AIChE J. 62(10), 3611–3627 (2016)
Chen, W., Ren, Y., Zhang, G., Biegler, L.T.: A simultaneous approach for singular optimal control based on partial moving grid. AIChE J. 65(6), e16584 (2019)
Ross, I.M., Fahroo, F.: Pseudospectral knotting methods for solving nonsmooth optimal control problems. J. Guid. Control Dyn. 27(3), 397–405 (2004)
Lavrentiev, M.: Sur quelques problemes du calcul des variations. Ann. Mat. Pura Appl. 4, 7–28 (1927)
Ball, J.M., Knowles, G.: A numerical method for detecting singular minimizers. Numer. Math. 51(2), 181–197 (1987)
Eide, J. , Rao, A.V.: Lavrentiev phenomenon in hp Gaussian quadrature collocation methods for optimal control. In: 2016 AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016–5575, Long Beach, California, 13–16 Sept (2016)
Eide, J.D., Hager, W.W., Rao, A.V.: Modified radau collocation method for solving optimal control problems with nonsmooth solutions. Part I: Lavrentiev Phenomenon and the Search Space. In: 2018 IEEE Conference on Decision and Control (CDC), 17–19 Dec (2018), pp. 1644–1650
Eide, J.D., Hager, W.W., Rao, A.V.: Modified Radau collocation method for solving optimal control problems with nonsmooth solutions. Part II: costate estimation and the transformed adjoint system. In: 2018 IEEE Conference on Decision and Control (CDC), 17–19 Dec (2018), pp. 1651–1656
Manià, B.: Soppa un esempio di Lavrentieff. Boll. Unione Mat. Ital. 13, 147–153 (1934)
Hager, W.W.: Runge–Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)
Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)
Ferriero, A.: The Lavrentiev phenomenon in the calculus of variations. Ph.d. thesis, Universita degli Studi di Milano-Bicocca (2004)
Acknowledgements
The authors gratefully acknowledge support for this research from the U.S. Office of Naval Research under Grants N00014-15-1-2048 and N00014-19-1-2543, and from the U.S. National Science Foundation under Grants CBET-1404767, DMS-1522629, DMS-1819002, CMMI-1563225, and CMMI-2031213.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Eide, J.D., Hager, W.W. & Rao, A.V. Modified Legendre–Gauss–Radau Collocation Method for Optimal Control Problems with Nonsmooth Solutions. J Optim Theory Appl 191, 600–633 (2021). https://doi.org/10.1007/s10957-021-01810-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-021-01810-5