Skip to main content
Log in

Local Convergence Analysis of a Primal–Dual Method for Bound-Constrained Optimization Without SOSC

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We propose a local convergence analysis of a primal–dual interior point algorithm for the solution of a bound-constrained optimization problem. The algorithm includes a regularization technique to prevent singularity of the matrix of the linear system at each iteration, when the second-order sufficient conditions do not hold at the solution. These conditions are replaced by a milder assumption related to a local error-bound condition. This new condition is a generalization of the one used in unconstrained optimization. We show that by an appropriate updating strategy of the barrier parameter and of the regularization parameter, the proposed algorithm owns a superlinear rate of convergence. The analysis is made thanks to a boundedness property of the inverse of the Jacobian matrix arising in interior point algorithms. An illustrative example is given to show the behavior and the gain obtained by this regularization strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Armand, P., Benoist, J.: A local convergence property of primal–dual methods for nonlinear programming. Math. Program. 115(2, Ser. A), 199–222 (2008). https://doi.org/10.1007/s10107-007-0136-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Armand, P., Benoist, J., Dussault, J.P.: Local path-following property of inexact interior methods in nonlinear programming. Comput. Optim. Appl. 52(1), 209–238 (2012). https://doi.org/10.1007/s10589-011-9406-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Armand, P., Benoist, J., Orban, D.: Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming. Comput. Optim. Appl. 41(1), 1–25 (2008). https://doi.org/10.1007/s10589-007-9095-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrd, R.H., Liu, G., Nocedal, J.: On the local behaviour of an interior point method for nonlinear programming. In: Numerical Analysis 1997 (Dundee), Pitman Research Notes in Mathematical Series, vol. 380, pp. 37–56. Longman, Harlow (1998)

  5. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89(3), 507–541 (1996). https://doi.org/10.1007/BF02275347

    Article  MathSciNet  MATH  Google Scholar 

  6. Gould, N.I.M., Orban, D., Sartenaer, A., Toint, P.L.: Superlinear convergence of primal–dual interior point algorithms for nonlinear programming. SIAM J. Optim. 11(4), 974–1002 (2001). https://doi.org/10.1137/S1052623400370515

    Article  MathSciNet  MATH  Google Scholar 

  7. Gould, N.I.M., Orban, D., Sartenaer, A., Toint, P.L.: Componentwise fast convergence in the solution of full-rank systems of nonlinear equations. Math. Program. 92(3, Ser. B), 481–508 (2002). https://doi.org/10.1007/s101070100287

    Article  MathSciNet  MATH  Google Scholar 

  8. Tits, A.L., Wächter, A., Bakhtiari, S., Urban, T.J., Lawrence, C.T.: A primal–dual interior-point method for nonlinear programming with strong global and local convergence properties. SIAM J. Optim. 14(1), 173–199 (2003). https://doi.org/10.1137/S1052623401392123

    Article  MathSciNet  MATH  Google Scholar 

  9. Yamashita, H., Yabe, H.: Superlinear and quadratic convergence of some primal–dual interior point methods for constrained optimization. Math. Program. 75(3, Ser. A), 377–397 (1996). https://doi.org/10.1007/BF02592190

    Article  MathSciNet  MATH  Google Scholar 

  10. Hager, W.W., Zhang, H.: Self-adaptive inexact proximal point methods. Comput. Optim. Appl. 39(2), 161–181 (2008). https://doi.org/10.1007/s10589-007-9067-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Esmaeili, H., Kimiaei, M.: A trust-region method with improved adaptive radius for systems of nonlinear equations. Math. Methods Oper. Res. 83(1), 109–125 (2016). https://doi.org/10.1007/s00186-015-0522-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, J., Yuan, Y.: A regularized Newton method for monotone nonlinear equations and its application. Optim. Methods Softw. 29(1), 102–119 (2014). https://doi.org/10.1080/10556788.2012.746344

    Article  MathSciNet  MATH  Google Scholar 

  13. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. In: Topics in Numerical Analysis, Computing Supplementa, vol. 15, pp. 239–249. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6217-0_18

  14. Armand, P., Lankoandé, I.: An inexact proximal regularization method for unconstrained optimization. Math. Methods Oper. Res. 85(1), 43–59 (2017). https://doi.org/10.1007/s00186-016-0561-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, D.H., Fukushima, M., Qi, L., Yamashita, N.: Regularized Newton methods for convex minimization problems with singular solutions. Comput. Optim. Appl. 28(2), 131–147 (2004). https://doi.org/10.1023/B:COAP.0000026881.96694.32

    Article  MathSciNet  MATH  Google Scholar 

  16. Ueda, K., Yamashita, N.: A regularized Newton method without line search for unconstrained optimization. Comput. Optim. Appl. 59(1–2), 321–351 (2014). https://doi.org/10.1007/s10589-014-9656-x

    Article  MathSciNet  MATH  Google Scholar 

  17. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11/12(1–4), 275–302 (1999). https://doi.org/10.1080/10556789908805754

    Article  MathSciNet  MATH  Google Scholar 

  18. Castro, J., Cuesta, J.: Quadratic regularizations in an interior-point method for primal block-angular problems. Math. Program. 130(2, Ser. A), 415–445 (2011). https://doi.org/10.1007/s10107-010-0341-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedlander, M.P., Orban, D.: A primal–dual regularized interior-point method for convex quadratic programs. Math. Program. Comput. 4(1), 71–107 (2012). https://doi.org/10.1007/s12532-012-0035-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Tseng, P., Yun, S.: Incrementally updated gradient methods for constrained and regularized optimization. J. Optim. Theory Appl. 160(3), 832–853 (2014). https://doi.org/10.1007/s10957-013-0409-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Armand, P., Benoist, J.: Uniform boundedness of the inverse of a Jacobian matrix arising in regularized interior-point methods. Math. Program. 137(1–2, Ser. A), 587–592 (2013). https://doi.org/10.1007/s10107-011-0498-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Tran, N.N.: Infeasibility detection and regularization strategies in nonlinear optimization. Ph.D. thesis, Université de Limoges, École Doctorale SISMI (2018). https://www.theses.fr/2018LIMO0059

  23. Fuentes, M., Malick, J., Lemaréchal, C.: Descentwise inexact proximal algorithms for smooth optimization. Comput. Optim. Appl. 53(3), 755–769 (2012). https://doi.org/10.1007/s10589-012-9461-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Humes Jr., C., Silva, P.J.S.: Inexact proximal point algorithms and descent methods in optimization. Optim. Eng. 6(2), 257–271 (2005). https://doi.org/10.1007/s11081-005-6798-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y.J., Li, D.H.: Truncated regularized Newton method for convex minimizations. Comput. Optim. Appl. 43(1), 119–131 (2009). https://doi.org/10.1007/s10589-007-9128-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Polyak, R.A.: Regularized Newton method for unconstrained convex optimization. Math. Program. 120(1, Ser. B), 125–145 (2009). https://doi.org/10.1007/s10107-007-0143-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Santos, S.A., Silva, R.C.M.: An inexact and nonmonotone proximal method for smooth unconstrained minimization. J. Comput. Appl. Math. 269, 86–100 (2014). https://doi.org/10.1016/j.cam.2014.03.023

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, C., Chen, X., Liang, Y.: A regularized Newton method for degenerate unconstrained optimization problems. Optim. Lett. 6(8), 1913–1933 (2012). https://doi.org/10.1007/s11590-011-0386-z

    Article  MathSciNet  MATH  Google Scholar 

  29. Ueda, K., Yamashita, N.: Convergence properties of the regularized Newton method for the unconstrained nonconvex optimization. Appl. Math. Optim. 62(1), 27–46 (2010). https://doi.org/10.1007/s00245-009-9094-9

    Article  MathSciNet  MATH  Google Scholar 

  30. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014). https://doi.org/10.1561/2400000003

    Article  Google Scholar 

  31. Wang, C.Y., Zhang, J.Z., Zhao, W.L.: Two error bounds for constrained optimization problems and their applications. Appl. Math. Optim. 57(3), 307–328 (2008). https://doi.org/10.1007/s00245-007-9023-8

    Article  MathSciNet  MATH  Google Scholar 

  32. Tseng, P.: Error bounds and superlinear convergence analysis of some Newton-type methods in optimization. In: Nonlinear Optimization and Related Topics (Erice, 1998), Applied Optimization, vol. 36, pp. 445–462. Kluwer Academic Publishers, Dordrecht (2000). https://doi.org/10.1007/978-1-4757-3226-9_24

  33. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9780511810817

    Book  MATH  Google Scholar 

  34. Armand, P., Benoist, J., Orban, D.: From global to local convergence of interior methods for nonlinear optimization. Optim. Methods Softw. 28(5), 1051–1080 (2013). https://doi.org/10.1080/10556788.2012.668905

    Article  MathSciNet  MATH  Google Scholar 

  35. Armand, P., Omheni, R.: A mixed logarithmic barrier-augmented Lagrangian method for nonlinear optimization. J. Optim. Theory Appl. 173(2), 523–547 (2017). https://doi.org/10.1007/s10957-017-1071-x

    Article  MathSciNet  MATH  Google Scholar 

  36. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005). https://doi.org/10.1137/S1052623403426556

    Article  MathSciNet  MATH  Google Scholar 

  37. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Berlin, New York (1981)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Armand.

Additional information

Communicated by Marco Antonio López-Cerdá.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix: Properties of the Regularized Jacobian Matrix

A Appendix: Properties of the Regularized Jacobian Matrix

The matrix of the linear system (3) is of the form

$$\begin{aligned} J_\theta (w)= \begin{pmatrix} H(w) + \theta I &{} -I \\ Z &{} X\end{pmatrix}, \end{aligned}$$
(42)

where \(w=(x,z)\in {\mathbb {R}}^{2n}\), \(H(w)\in {\mathbb {R}}^{n\times n}\) is symmetric, and \(\theta \ge 0\) is a regularization parameter. Two properties of this matrix are stated here. The statements of the following lemmas can be understood in a general framework of linear algebra. They are stated without proof. Detailed proofs can be found in [22, Lemma 5.8 and Lemma 5.9].

The first lemma is related to an upper bound of the inverse of \(J_\theta (w)\), for points on the boundary of the nonnegative orthant. This lemma is used in the proof of Lemma 5.1.

Lemma A.1

Let us define \({{{\mathcal {C}}}}=\{w=(x,z)\in {\mathbb {R}}^{2n}: 0\le x\perp z\ge 0\}\). Let \(w^*\in {{{\mathcal {C}}}}\) be such that

$$\begin{aligned} a:=\min \{x_i^*+z_i^*:i=1,\ldots ,n\}>0. \end{aligned}$$

Let \({\mathcal {A}}=\{i: x^*_i = 0\}\) be the active set at \(x^*\) related to the bounds \(x\ge 0\). Let \(H: {\mathbb {R}}^{2n}\rightarrow {\mathbb {R}}^{n\times n}\) be a continuous function such that \(H(w)=H(w)^\top \). Assume that, for all \(u\in {\mathbb {R}}^n\) such that \(u_i=0\) for all \(i\in {\mathcal {A}}\), \(u^\top H(w^*) u\ge 0\). Then, for all \(\varepsilon \in ]0,a[\), there exists \(C>0\) such that for all \(w\in {B}(w^*,\varepsilon )\cap {{{\mathcal {C}}}}\) and \(\theta >0\), the matrix \(J_\theta (w)\) is nonsingular and

$$\begin{aligned} \Vert J_\theta (w)^{-1}\Vert \le C \max \{\theta ,1/\theta \} \end{aligned}$$

The second lemma also gives an upper bound of the inverse of \(J_\theta (w)\), but for points that are located in the interior of the positive orthant. This property is used in the proof of Lemma 5.2.

Lemma A.2

Let \(w^*=(x^*,z^*)\in {\mathbb {R}}^{2n}\) be such that

$$\begin{aligned} 0\le x^*\perp z^*\ge 0\quad \text{ and }\quad a:=\min \{x_i^*+z_i^*|i=1,\ldots n\}>0. \end{aligned}$$

Let \(H: {\mathbb {R}}^{2n}\rightarrow {\mathbb {R}}^{n\times n}\) be a continuous function such that for all \(w\in {\mathbb {R}}^{2n}\), \(H(w)=H(w)^\top \). Let \(\theta :{\mathbb {R}}^{2n} \rightarrow {\mathbb {R}}_{++}\) be a continuous function such that \(\theta (w)\ge \gamma \Vert x\circ z\Vert ^t\), for all \(w\in {\mathbb {R}}^{2n}\), for some constants \(\gamma >0\) and \(t\in ]0,1[\). Assume that for all \(w\in {\mathbb {R}}^{2n}_{++}\), \(H(w)+X^{-1}Z\succeq 0\). For all \(w\in {\mathbb {R}}^{2n}_{++}\), the matrix \(J_{\theta (w)}(w)\) is nonsingular and for all \(\varepsilon \in ]0,a[\), there exists \(C>0\) such that for all \(w\in B(w^*,\varepsilon )\cap {\mathbb {R}}^{2n}_{++}\),

$$\begin{aligned} \Vert J_{\theta (w)}(w)^{-1}\Vert \le \dfrac{C}{\theta (w)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armand, P., Tran, N.N. Local Convergence Analysis of a Primal–Dual Method for Bound-Constrained Optimization Without SOSC. J Optim Theory Appl 189, 96–116 (2021). https://doi.org/10.1007/s10957-021-01822-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01822-1

Keywords

Mathematics Subject Classification

Navigation