Skip to main content
Log in

Optimal Immunity Control and Final Size Minimization by Social Distancing for the SIR Epidemic Model

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The aim of this article is to understand how to apply partial or total containment to SIR epidemic model during a given finite time interval in order to minimize the epidemic final size, that is the cumulative number of cases infected during the complete course of an epidemic. The existence and uniqueness of an optimal strategy are proved for this infinite-horizon problem, and a full characterization of the solution is provided. The best policy consists in applying the maximal allowed social distancing effort until the end of the interval, starting at a date that is not always the closest date and may be found by a simple algorithm. Both theoretical results and numerical simulations demonstrate that it leads to a significant decrease in the epidemic final size. We show that in any case the optimal intervention has to begin before the number of susceptible cases has crossed the herd immunity level, and that its limit is always smaller than this threshold. This problem is also shown to be equivalent to the minimum containment time necessary to stop at a given distance after this threshold value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In other words, they only take a.e. two different values.

  2. Other valuable contributions are to be found in [26], including the consideration of added integral term accounting for control cost, and hospital overflow minimization.

  3. To avoid any misunderstanding about the differentiability of \(S(\cdot )\) with respect to \(T_0\), let us make the use of \(\widehat{S}\) precise. This function stands for the derivative of the function \([0,T]\ni T_0\mapsto S(\cdot ,T_0)\in C^0 ([T_0,T])\), where \(S(\cdot ,T_0)\) is defined as the unique solution to (20b) on \([T_0,T]\), where \(S(T_0)\) is defined as the value at \(T_0\) of the unique solution to (20a). Defined in this way, the differentiability of this mapping is standard.

  4. More precisely, we call “admissible direction” any element of the tangent cone \(\mathcal {T}_{u,{\mathcal {U}}_{\alpha , T}}\) to the set \({\mathcal {U}}_{\alpha , T}\) at u. The cone \(\mathcal {T}_{u,{\mathcal {U}}_{\alpha , T}}\) is the set of functions \(h\in L^\infty (0,T)\) such that, for any sequence of positive real numbers \(\varepsilon _n\) decreasing to 0, there exists a sequence of functions \(h_n\in L^\infty (0,T)\) converging to h as \(n\rightarrow +\infty \), and \(u+\varepsilon _nh_n\in {\mathcal {U}}_{\alpha , T}\) for every \(n\in {\mathbb {N}}\).

References

  1. Abakuks, A.: An optimal isolation policy for an epidemic. J. Appl. Probab. 10(2), 247–262 (1973)

    Article  MathSciNet  Google Scholar 

  2. Abakuks, A.: Optimal immunisation policies for epidemics. Adv. Appl. Probab. 6(3), 494–511 (1974)

    Article  MathSciNet  Google Scholar 

  3. Ainseba, B., Iannelli, M.: Optimal screening in structured SIR epidemics. Math. Modell. Nat. Phenom. 7(3), 12–27 (2012)

    Article  MathSciNet  Google Scholar 

  4. Alkama, M., Elhia, M., Rachik, Z., Rachik, M., Labriji, E.H.: Free terminal time optimal control problem of an SIR epidemic model with vaccination. Int. J. Sci. Res. 3, 227 (2014)

    Google Scholar 

  5. Greenhalgh, D.: Some results on optimal control applied to epidemics. Math. Biosci. 88(2), 125–158 (1988)

  6. Andreasen, V.: The final size of an epidemic and its relation to the basic reproduction number. Bull. Math. Biol. 73(10), 2305–2321 (2011)

    Article  MathSciNet  Google Scholar 

  7. Gaff, H., Schaefer, E.: Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math. Biosci. Eng. 6(3), 469 (2009)

  8. Behncke, H.: Optimal control of deterministic epidemics. Optim. Control Appl. Methods 21(6), 269–285 (2000)

    Article  MathSciNet  Google Scholar 

  9. Bliman, P.A., Duprez, M.: How best can finite-time social distancing reduce epidemic final size? J. Theor. Biol. 511, 110557 (2020)

    Article  MathSciNet  Google Scholar 

  10. Bolzoni, L., Bonacini, E., Soresina, C., Groppi, M.: Time-optimal control strategies in SIR epidemic models. Math. Biosci. 292, 86–96 (2017)

    Article  MathSciNet  Google Scholar 

  11. Bolzoni, L., Bonacini, E., Marca, R.D., Groppi, M.: Optimal control of epidemic size and duration with limited resources. Math. Biosci. 315, 108232 (2019)

    Article  MathSciNet  Google Scholar 

  12. Buonomo, B., Manfredi, P., d’Onofrio, A.: Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases. J. Math. Biol. 78(4), 1089–1113 (2019)

    Article  MathSciNet  Google Scholar 

  13. Buonomo, B., Della Marca, R., d’Onofrio, A.: Optimal public health intervention in a behavioural vaccination model: the interplay between seasonality, behaviour and latency period. Math. Med. Biol. A J. IMA 36(3), 297–324 (2019)

    Article  MathSciNet  Google Scholar 

  14. Di Blasio, G.: A synthesis problem for the optimal control of epidemics. Numer. Funct. Anal. Optim. 2(5), 347–359 (1980)

    Article  MathSciNet  Google Scholar 

  15. Shim, E.: Optimal dengue vaccination strategies of seropositive individuals. Math. Biosci. Eng. 16(3), 1171–1189 (2019)

  16. Gaff, H., Schaefer, E.: Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math. Biosci. Eng. 6(3), 469 (2009)

    Article  MathSciNet  Google Scholar 

  17. Greenhalgh, D.: Some results on optimal control applied to epidemics. Math. Biosci. 88(2), 125–158 (1988)

    Article  MathSciNet  Google Scholar 

  18. Hansen, E., Day, T.: Optimal control of epidemics with limited resources. J. Math. Biol. 62(3), 423–451 (2011)

    Article  MathSciNet  Google Scholar 

  19. Hollingsworth, T.D., Klinkenberg, D., Heesterbeek, H., Anderson, R.M.: Mitigation strategies for pandemic influenza A: balancing conflicting policy objectives. PLoS Comput. Biol. 7(2), e1001076 (2011)

    Article  MathSciNet  Google Scholar 

  20. Hu, Q., Zou, X.: Optimal vaccination strategies for an influenza epidemic model. J. Biol. Syst. 21(04), 1340006 (2013)

    Article  MathSciNet  Google Scholar 

  21. Morris, D.H., Rossine, F.W., Plotkin, J.B., Levin, S.A.: Optimal, near-optimal, and robust epidemic control. arXiv preprint arXiv:2004.02209 (2020)

  22. Jaberi-Douraki, M., Moghadas, S.M.: Optimality of a time-dependent treatment profile during an epidemic. J. Biol. Dyn. 7(1), 133–147 (2013)

    Article  MathSciNet  Google Scholar 

  23. Jaberi-Douraki, M., Heffernan, J.M., Wu, J., Moghadas, S.M.: Optimal treatment profile during an influenza epidemic. Differ. Equ. Dyn. Syst. 21(3), 237–252 (2013)

    Article  MathSciNet  Google Scholar 

  24. Katriel, G.: The size of epidemics in populations with heterogeneous susceptibility. J. Math. Biol. 65(2), 237–262 (2012)

    Article  MathSciNet  Google Scholar 

  25. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-I. Proc. R. Soc. 115A, 700–721 (1927)

    MATH  Google Scholar 

  26. Jaberi-Douraki, M., Moghadas, S.M.: Optimality of a time-dependent treatment profile during an epidemic. J. Biol. Dyn. 7(1), 133–147 (2013)

  27. Jaberi-Douraki, M., Heffernan, J.M., Wu, J., Moghadas, S.M.: Optimal treatment profile during an influenza epidemic. Differ. Equ. Dyn. Syst. 21(3), 237–252 (2013)

  28. Kolesin, I.D., Zhitkova, E.M.: Optimization of immunocorrection of collective immunity. Autom. Remote Control 77(6), 1031–1040 (2016)

    Article  MathSciNet  Google Scholar 

  29. Kolesin, I.D., Zhitkova, E.M.: Optimization of immunocorrection of collective immunity. Autom. Remote Control 77(6), 1031–1040 (2016)

  30. Laguzet, L., Turinici, G.: Globally optimal vaccination policies in the SIR model: smoothness of the value function and uniqueness of the optimal strategies. Math. Biosci. 263, 180–197 (2015)

    Article  MathSciNet  Google Scholar 

  31. Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)

    MATH  Google Scholar 

  32. Ma, J., Earn, D.J.: Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol. 68(3), 679–702 (2006)

    Article  MathSciNet  Google Scholar 

  33. Manfredi, P., D’Onofrio, A.: Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. Springer, Berlin (2013)

    Book  Google Scholar 

  34. Angulo, M.T., Castaños, F., Velasco-Hernandez, J.X., Moreno, J.A.: A simple criterion to design optimal nonpharmaceutical interventions for epidemic outbreaks. medRxiv (2020)

  35. Miller, J.C.: A note on the derivation of epidemic final sizes. Bull. Math. Biol. 74(9), 2125–2141 (2012)

    Article  MathSciNet  Google Scholar 

  36. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-I. Proc. R. Soc. 115A, 700–721 (1927)

  37. Morton, R., Wickwire, K.H.: On the optimal control of a deterministic epidemic. Adv. Appl. Probab. 6(4), 622–635 (1974)

    Article  MathSciNet  Google Scholar 

  38. Piguillem, F., Shi, L.: The optimal COVID-19 quarantine and testing policies. Tech. Rep, Einaudi Institute for Economics and Finance (EIEF) (2020)

    Google Scholar 

  39. Salje, H., Kiem, C.T., Lefrancq, N., Courtejoie, N., Bosetti, P., Paireau, J., Andronico, A., Hozé, N., Richet, J., Dubost, C.L., et al.: Estimating the burden of SARS-CoV-2 in France. Science (2020)

  40. Shim, E.: Optimal dengue vaccination strategies of seropositive individuals. Math. Biosci. Eng. 16(3), 1171–1189 (2019)

    Article  MathSciNet  Google Scholar 

  41. Wickwire, K.H.: Optimal isolation policies for deterministic and stochastic epidemics. Math. Biosci. 26(3–4), 325–346 (1975)

    Article  MathSciNet  Google Scholar 

  42. Wickwire, K.: Optimal immunization rules for an epidemic with recovery. J. Optim. Theory Appl. 27(4), 549–570 (1979)

    Article  MathSciNet  Google Scholar 

  43. Yang, K., Wang, E., Zhou, Y., Zhou, K.: Optimal vaccination policy and cost analysis for epidemic control in resource-limited settings. Kybernetes (2015)

  44. Zhou, Y., Wu, J., Wu, M.: Optimal isolation strategies of emerging infectious diseases with limited resources. Math. Biosci. Eng. MBE 10, 1691–1701 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere acknowledgment to working groups Maths4Covid19 and OptimCovid19 for fruitful discussions and in particular their colleagues Luis Almeida (CNRS UMR 7598, LJLL, France), Emmanuel Franck (INRIA Grand-Est and IRMA Strasbourg, France), Sidi-Mahmoud Kaber (Sorbonne Université, LJLL, France), Grégoire Nadin (CNRS UMR 7598, LJLL, France) and Benoît Perthame (Sorbonne Université, LJLL, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Vauchelet.

Additional information

Communicated by Irena Lasiecka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A-Implementation Issues

Appendix A-Implementation Issues

We provide here an insight of the numerical methods used in Sect. 3. The codes are available on:

https://github.com/michelduprez/optimal-immunity-control.git.

1.1 A.1. Solving Problem \(\mathcal {P}_{\alpha ,T}\) by a Direct Approach

In order to check the consistency of the results of Theorem 2.3, we solved directly the optimal control problem \(\mathcal {P}_{\alpha ,T}\). Our approach rests upon the use of gradient like algorithms, which necessitates the computation of the differential of \(S_\infty \) in an admissible directionFootnote 4h. According to the proof of Theorem 2.2 (see Sect. 4.3), this differential reads

$$\begin{aligned} DS_\infty (u)\cdot h=\int _0^T\left( \gamma -\beta S\left( p_I-p_S\right) \right) Ih \,dt, \end{aligned}$$

where \((p_S,p_I)\) denotes the adjoint state, solving the backward adjoint system (14a)–(14b). Thanks to this expression of \(DS_\infty (u)\cdot h\), we deduce a simple projected gradient algorithm to solve numerically the optimal control problem \(\mathcal {P}_{\alpha ,T}^{\varPhi }\), then \(\mathcal {P}_{\alpha ,T}\). The algorithm is described in Algorithm 1. The projection operator \(\mathbb {P}_{\mathcal {U}_{\alpha ,T}}\) is given by

$$\begin{aligned} \mathbb {P}_{\mathcal {U}_{\alpha ,T}}u(t)=\min \left\{ \max \{u(t),\alpha \},1\right\} , \quad \text {for a.e. }t\in [0,T]. \end{aligned}$$
figure e

1.2 A.2. Solving Problem \(\mathcal {P}_{\alpha ,T}\) Thanks to the Theoretical Results

Taking advantage of the theoretical results given in Theorem 2.3, we then considered a simpler algorithm, based on the solution of Problem \(\widetilde{\mathcal {P}}_{\alpha ,T}\) by bisection method. This method is described in Algorithm 2.

figure f
Fig. 8
figure 8

Graph of the cost value j with respect to \(T_0\) for \(T=200\) (left) and \(T=300\) (right)

All computations shown in Sect. 3 indicate, as expected, that the optimal trajectories computed by the two methods do coincide.

For illustrative purpose, we provide in Fig. 8 the graph of the cost \(j(T_0)\) defined in (18) that corresponds to the one-dimensional optimization Problem \(\widetilde{\mathcal {P}}_{\alpha ,T}\). As can be seen, the cost is not convex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bliman, PA., Duprez, M., Privat, Y. et al. Optimal Immunity Control and Final Size Minimization by Social Distancing for the SIR Epidemic Model. J Optim Theory Appl 189, 408–436 (2021). https://doi.org/10.1007/s10957-021-01830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01830-1

Keywords

Mathematics Subject Classification