Skip to main content
Log in

Persistent Monitoring by Multiple Unmanned Aerial Vehicles Using Bernstein Polynomials

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A framework for monitoring a target modeled as Dubins car using multiple UAVs is proposed. The UAVs are subject to minimum and maximum speed, maximum angular rate constraints, as well as inter-vehicle safety requirements and no-fly-zones. The problem is formulated as a continuous time nonlinear optimal control problem. This problem is first simplified by using a sequential approach, which significantly reduces its complexity. Then, by defining the desired trajectories to be tracked by the UAVs as Bernstein polynomials, it is transcribed into a nonlinear optimization problem. It is shown through numerical simulations that the present approach is computationally efficient, and thus it is well suited for trajectory planning/re-planning to monitor a target of unknown speed, heading direction and unexpected detours. Moreover, the proposed method guarantees satisfaction of feasibility and safety constraints for the whole planning time period, rather than only at discrete time points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, Ross P., Milutinović, D.: A stochastic approach to Dubins vehicle tracking problems. IEEE Trans. Automatic Control 59(10), 2801–2806 (2014). https://doi.org/10.1109/TAC.2014.2314224

    Article  MathSciNet  MATH  Google Scholar 

  2. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control. Dyn. 21(2), 193–207 (1998). https://doi.org/10.2514/2.4231

    Article  MATH  Google Scholar 

  3. Betts, J.T.: Practical methods for optimal control and estimation using nonlinear programming. SIAM (2010). https://doi.org/10.1137/1.9780898718577

    Article  MATH  Google Scholar 

  4. Brown, S.S.: Optimal search for a moving target in discrete time and space. Oper. Res. 28(6), 1275–1289 (1980). https://doi.org/10.1287/opre.28.6.1275

    Article  MathSciNet  MATH  Google Scholar 

  5. Casbeer, D.W., Kingston, D.B., Beard, R.W., McLain, T.W.: Cooperative forest fire surveillance using a team of small unmanned air vehicles. Int. J. Syst. Sci. 37(6), 351–360 (2006). https://doi.org/10.1080/00207720500438480

    Article  MATH  Google Scholar 

  6. Chung, H., Polak, E., Royset, J.O., Sastry, S.: On the optimal detection of an underwater intruder in a channel using unmanned underwater vehicles. Naval Res. Logist. (NRL) 58(8), 804–820 (2011). https://doi.org/10.1002/nav.20487

    Article  MathSciNet  MATH  Google Scholar 

  7. Cichella, V., Kaminer, I., Dobrokhodov, V., Xargay, E., Hovakimyan, N., Pascoal, A.: Geometric 3D path-following control for a fixed-wing UAV on SO (3). In: AIAA Guidance, Navigation, and Control Conference, p. 6415 (2011). https://doi.org/10.2514/6.2011-6415

  8. Cichella, V., Kaminer, I., Walton, C., Hovakimyan, N.: Optimal motion planning for differentially flat systems using Bernstein approximation. IEEE Control Syst. Lett. 2(1), 181–186 (2017). https://doi.org/10.1109/LCSYS.2017.2778313

    Article  MathSciNet  Google Scholar 

  9. Cichella, V., Kaminer, I., Walton, C., Hovakimyan, N., Pascoal, A.: Bernstein approximation of optimal control problems. arXiv preprint arXiv:1812.06132 (2018)

  10. Cichella, V., Kaminer, I., Walton, C., Hovakimyan, N., Pascoal, A.M.: Consistent approximation of optimal control problems using Bernstein polynomials. In: 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE, pp. 4292–4297 (2019). https://doi.org/10.1109/CDC40024.2019.9029677

  11. Cichella, V., Kaminer, I., Walton, C., Hovakimyan, N., Pascoal, A.M.: Optimal multi-vehicle motion planning using Bernstein approximants. IEEE Trans. Autom. Control (2020). https://doi.org/10.1109/TAC.2020.2999329

    Article  MATH  Google Scholar 

  12. Conway, B.A.: A survey of methods available for the numerical optimization of continuous dynamic systems. J. Optim. Theory Appl. 152(2), 271–306 (2012). https://doi.org/10.1007/s10957-011-9918-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding, X.C., Rahmani, A.R., Egerstedt, M.: Multi-UAV convoy protection: an optimal approach to path planning and coordination. IEEE Trans. Rob. 26(2), 256–268 (2010). https://doi.org/10.1109/TRO.2010.2042325

    Article  Google Scholar 

  14. Dobbie, J.M.: Solution of some surveillance-evasion problems by the methods of differential games. In: Proceedings of the 4th International Conference on Operational Research, MIT, Wiley, New York (1966)

  15. Dudek, G., Jenkin, M.R.M., Milios, E., Wilkes, D.: A taxonomy for multi-agent robotics. Auton. Robot. 3(4), 375–397 (1996). https://doi.org/10.1007/BF00240651

    Article  Google Scholar 

  16. Elijah, P.: Optimization: algorithms and consistent approximations (1997)

  17. Farouki, R.T.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. Des. 29(6), 379–419 (2012). https://doi.org/10.1016/j.cagd.2012.03.001

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaminer, I., Pascoal, A.M., Xargay, E., Hovakimyan, N., Cichella, V., Dobrokhodov, V.: Time-Critical Cooperative Control of Autonomous Air Vehicles. Butterworth-Heinemann, Vladimir (2017)

    MATH  Google Scholar 

  19. Kielas-Jensen, C., Cichella, V.: BeBOT: Bernstein polynomial toolkit for trajectory generation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 3288–3293 (2019). https://doi.org/10.1109/IROS40897.2019.8967564

  20. Kielas-Jensen, C., Cichella, V.: Bernstein polynomial-based transcription method for solving optimal trajectory generation problems. arXiv preprint arXiv:2010.09992 (2020)

  21. Lalish, E., Morgansen, K.A., Tsukamaki, T.: Oscillatory control for constant-speed unicycle-type vehicles. In: 2007 46th IEEE Conference on Decision and Control, IEEE, pp. 5246–5251 (2007). https://doi.org/10.1109/CDC.2007.4434910

  22. LaValle, S.M., González-Banos, H.H., Becker, C., Latombe, J.-C: Motion strategies for maintaining visibility of a moving target. In: Proceedings of International Conference on Robotics and Automation, vol. 1, IEEE, pp. 731–736 (1997). https://doi.org/10.1109/ROBOT.1997.620122

  23. Lee, B.-G., Park, Y.: Distance for Bézier curves and degree reduction. Bull. Aust. Math. Soc. 56(3), 507–515 (1997). https://doi.org/10.1017/S0004972700031312

    Article  MATH  Google Scholar 

  24. Lee, J., Huang, R., Vaughn, A., Xiao, X., Hedrick, J.K., Zennaro, M., Sengupta, R.: Strategies of path-planning for a UAV to track a ground vehicle. In: AINS Conference (2003)

  25. Li, Z., Hovakimyan, N., Dobrokhodov, V., Kaminer, I.: Vision-based target tracking and motion estimation using a small UAV. In: 49th IEEE Conference on Decision and Control (CDC), IEEE, pp. 2505–2510 (2010). https://doi.org/10.1109/CDC.2010.5718149

  26. Livermore, R.A.: Optimal UAV path planning for tracking a moving ground vehicle with a gimbaled camera. Technical Report, Air Force Institute of Technology Wright-Patterson AFB OH Graduate School of Engineering and Management (2014)

  27. Maki, T., Horimoto, H., Ishihara, T., Kofuji, K.: Autonomous tracking of sea turtles based on multibeam imaging sonar: toward robotic observation of marine life. IFAC-Papers OnLine 52(21), 86–90 (2019). https://doi.org/10.1016/j.ifacol.2019.12.288

    Article  Google Scholar 

  28. Milutinović, D., Casbeer, D.W., Kingston, D., Rasmussen, S.: A stochastic approach to small UAV feedback control for target tracking and blind spot avoidance. In: 2017 IEEE Conference on Control Technology and Applications (CCTA), pp. 1031–1037 (2017). https://doi.org/10.1109/CCTA.2017.8062595

  29. Quintero, S.A.P., Hespanha, J.P.: Vision-based target tracking with a small UAV: optimization-based control strategies. Control Eng. Practice 32, 28–42 (2014). https://doi.org/10.1016/j.conengprac.2014.07.007

    Article  Google Scholar 

  30. Quintero, S.A.P., Ludkovski, M., Hespanha, J.P.: Stochastic optimal coordination of small UAVs for target tracking using regression-based dynamic programming. J. Intell. Robot. Syst. 82(1), 135–162 (2016). https://doi.org/10.1007/s10846-015-0270-7

    Article  Google Scholar 

  31. Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135(1), 497–528 (2009)

    Google Scholar 

  32. Ren, W., Beard, R.W: CLF-based tracking control for UAV kinematic models with saturation constraints. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), vol. 4, IEEE, pp. 3924–3929 (2003). https://doi.org/10.1109/CDC.2003.1271763

  33. Ross, I.M., Karpenko, M.: A review of pseudospectral optimal control: from theory to flight. Annu. Rev. Control. 36(2), 182–197 (2012). https://doi.org/10.1016/j.arcontrol.2012.09.002

  34. Royset, J.O.: Route optimization for multiple searchers. Naval Res. Logist. (NRL) 57(8), 701–717 (2010). https://doi.org/10.1002/nav.20432

    Article  MathSciNet  MATH  Google Scholar 

  35. Schwartz, A., Polak, E.: Consistent approximations for optimal control problems based on Runge–Kutta integration. SIAM J. Control. Optim. 34(4), 1235–1269 (1996). https://doi.org/10.1137/S0363012994267352

    Article  MathSciNet  MATH  Google Scholar 

  36. Schwartz, A.L.: Theory and implementation of numerical methods based on Runge–Kutta integration for solving optimal control problems. PhD Thesis, University of California, Berkeley (1996)

  37. Stephens, S., Manyam, S.G., Casbeer, D.W., Cichella, V., Kunz, D.L.: Randomized continuous monitoring of a target by agents with turn radius constraints. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, pp. 588–595 (2019). https://doi.org/10.1109/ICUAS.2019.8798373

  38. Sun, J., Li, B., Jiang, Y., Wen, C.: A camera-based target detection and positioning UAV system for search and rescue (SAR) purposes. Sensors 16(11), 1778 (2016). https://doi.org/10.3390/s16111778

    Article  Google Scholar 

  39. Wahlström, N., Özkan, E.: Extended target tracking using Gaussian processes. IEEE Trans. Signal Process. 63(16), 4165–4178 (2015). https://doi.org/10.1109/TSP.2015.2424194

    Article  MathSciNet  MATH  Google Scholar 

  40. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938). https://doi.org/10.2307/2371268

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Office of Naval Research, Grant N000142112091, with Ms. Christine Buzzell program officer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calvin Kielas-Jensen.

Additional information

Communicated by Mauro Pontani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

An nth order Bernstein polynomial, \(\mathbf {p}_n(t)\), is defined as

$$\begin{aligned} \mathbf {p}_n(t) = \sum _{k=0}^n{{{\bar{\mathbf{p}}}}_{k,n}b_{k, n}(t)}, \quad b_{k, n}(t) = \left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{(t-t_0)^k(t_f-t)^{n-k}}{(t_f-t_0)^n} \, , \end{aligned}$$
(24)

\(t \in [t_0, t_f]\), where \({{\bar{\mathbf{p}}}}_{k,n} \in \mathbb {R}^{N}\) is the kth control point, \(b_{k, n}(t)\), \(k = 0, \dots , n\), is the Bernstein basis, and \(\left( {\begin{array}{c}n\\ k\end{array}}\right) \) is the binomial coefficient. Bernstein polynomials (BPs) can be used to describe 2D (or 3D) spatial curves. In this case, BPs are often referred to as Bézier curves.

Furthermore, an nth order rational Bernstein polynomial, \(r_n(t)\) is defined as

$$\begin{aligned} r_n(t) = \frac{\sum _{k=0}^n{{\bar{p}}_{k,n} {\bar{w}}_{k,n} b_{k, n}(t)}}{\sum _{k=0}^n{{\bar{w}}_{k,n} b_{k, n}(t)}}, \quad t \in [t_0, t_f], \end{aligned}$$
(25)

where \({\bar{w}}_{k,n} \in \mathbb {R}\), \(k = 0, \dots , n\) are referred to as weights.

Next, we provide a review of relevant properties of (rational) BPs, which are used in this paper. For an extensive review on BPs, the reader is referred to [9, 17, 19].

Property A.1

End Point Values

The first and last control points of a (rational) Bernstein polynomial are its endpoints, i.e., \(\mathbf {p}_n(t_0) = {{\bar{\mathbf{p}}}}_{0,n} \quad \text {and} \quad \mathbf {p}_n(t_f) = {{\bar{\mathbf{p}}}}_{n, n}.\)

Property A.2

Integration

The definite integral of a Bernstein polynomial is computed as

$$\begin{aligned} \int _{t_0}^{t_f}{\mathbf {p}}_n(t)dt = w \sum _{k = 0}^{n} {{\bar{\mathbf{p}}}}_{k,n} \, , \qquad w = \frac{t_f-t_0}{n+1} \, . \end{aligned}$$
(26)

Property A.3

Differentiation

The derivative of a Bernstein polynomial is an \((n-1)\)th order Bernstein polynomial with vector of control points \({{\bar{\mathbf{p}}}}^\prime _{n-1} = [{{\bar{\mathbf{p}}}}^\prime _{0,n-1} , \ldots , {{\bar{\mathbf{p}}}}^\prime _{n-1,n-1}]\) given by \({{\bar{\mathbf{p}}}}_{n-1}^\prime = {{\bar{\mathbf{p}}}}_n \mathbf {D}_{n-1},\) where \(\mathbf {D}_{n-1}\) is the \(\mathbb {R}^{(n-1) \times n}\) differentiation matrix (see [19]).

Property A.4

Degree Elevation

Any Bernstein polynomial of degree n can be expressed as a Bernstein polynomial of degree m, \(m > n\). The vector of control points of the degree elevated Bernstein polynomial, namely \({{\bar{\mathbf{p}}}}_m = [{\bar{p}}_{0,m}, \dots , {\bar{p}}_{m, m}]\), can be calculated as \( {{\bar{\mathbf{p}}}}_{m} = {{\bar{\mathbf{p}}}}_{n} \mathbf {E}_{n}^{m}, \) where \(\mathbf {E}_{n}^{m} = \{e_{j,k}\} \in \mathbb {R}^{(n+1) \times (m+1)}\) is the degree elevation matrix with elements given by \( e_{i, i+j} = \frac{\left( {\begin{array}{c}m-n\\ j\end{array}}\right) \left( {\begin{array}{c}n\\ i\end{array}}\right) }{\left( {\begin{array}{c}m\\ i+j\end{array}}\right) }, \) where \(i = 0, \dots , n\) and \(j = 0, \dots , m - n\), all other values in the matrix are zero, and \({{\bar{\mathbf{p}}}}_n = [{\bar{p}}_{0, n}, \dots , {\bar{p}}_{n, n}]\) is the vector of control points of the curve being elevated (see [23]).

Property A.5

Arithmetic Operations

The sum (difference) of two polynomials of the same order can be performed by simply adding (subtracting) their control points.

Let \(f_m(t)\) and \(g_n(t)\) be two 1-dimensional BPs of degree m and n, respectively, with control points \({\bar{a}}_{0,m}, \dots , {\bar{a}}_{m,m}\) and \({\bar{b}}_{0,n}, \dots , {\bar{b}}_{n,n}\). The product \(h_{m+n}(t)=f_m(t)g_n(t)\) is a Bernstein polynomial of degree \((m+n)\) with control points \({\bar{p}}_{k, m+n}, k \in \{0, \dots , m+n\}\) given by

$$\begin{aligned} {\bar{p}}_{k,m+n} = \sum _{j=\max (0,k-n)}^{\min (m,k)} \frac{\left( {\begin{array}{c}m\\ j\end{array}}\right) \left( {\begin{array}{c}n\\ k-j\end{array}}\right) }{\left( {\begin{array}{c}m+n\\ k\end{array}}\right) } {\bar{a}}_{j, m} {\bar{b}}_{k-j, n}. \end{aligned}$$
(27)

The ratio between two 1-dimensional BPs, \(f_n(t)\) and \(g_n(t)\), with control points \({\bar{a}}_{0,n}, \dots , {\bar{a}}_{n,n}\) and \({\bar{b}}_{0,n}, \dots , {\bar{b}}_{n,n}\), i.e., \(r_n(t)=f_n(t)/g_n(t)\), can be expressed as a rational Bernstein polynomial as defined in (25), with control points and weights \( {{\bar{p}}}_{i,n} = \frac{{{\bar{a}}}_{i,n}}{{{\bar{b}}}_{i,n}}, \quad {{\bar{w}}}_{i,n} = {{\bar{b}}}_{i,n}, \) respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kielas-Jensen, C., Cichella, V., Casbeer, D. et al. Persistent Monitoring by Multiple Unmanned Aerial Vehicles Using Bernstein Polynomials. J Optim Theory Appl 191, 899–916 (2021). https://doi.org/10.1007/s10957-021-01921-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01921-z

Keywords