Abstract
In the present paper, we propose two new methods for tensor completion of third-order tensors. The proposed methods consist in minimizing the average rank of the underlying tensor using its approximate function, namely the tensor nuclear norm. The recovered data will be obtained by combining the minimization process with the total variation regularization technique. We will adopt the alternating direction method of multipliers, using the tensor T-product, to solve the main optimization problems associated with the two proposed algorithms. In the last section, we present some numerical experiments and comparisons with the most known image video completion methods.








Similar content being viewed by others
References
Aeron, S., Ely, G., Hoa, N., Kilmer, M., Zhang, Z.,: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: J. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842–3849 (2014)
Bader, B., W., Joseph., J. P., Kolda., T. G.,: Higher-order web link analysis using multilinear algebra. In: Fifth IEEE International Conference on Data Mining (ICDM’05) (2005)
Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G.,: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)
Barder, B.W., Kolda, T.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
Benczúr, A.A., Csalogány, K., Kurucs, M.: Methods for large scale SVD with missing values. Proc. KDD Cup Workshop 12, 31–38 (2007)
Bengua, J.A., Do, M.N., Phien, H.N., Tuan, H.D.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26, 2466–2479 (2017)
Boyd, S. P., Fazel, M., Hindi, H.,: A rank minimization heuristic with application to minimum order system approximation. Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), vol. 6, pp. 4734–4739 (2001)
Boyd, S., Parikh, N., Chu, E.: Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers. Now Publishers Inc., Delft (2011)
Braman, K., Hao, N., Hoover, R.C., Kilmer, M.E.: Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging. SIAM J. Matrix Anal. Appl. 34, 148–172 (2013)
Braman, K., Hao, N., Hoover, R.C., Kilmer, M.E.: Facial recognition using tensor-tensor decompositions. SIAM J. Imag. Sci. 6, 437–463 (2013)
Calatroni, L., Lanza, A., Pragliola, M., Sgallari, F.: Adaptive parameter selection for weighted-TV image reconstruction problems. J. Phys: Conf. Ser. 1476, 012003 (2020)
Calatroni, L., Lanza, A., Pragliola, M., Sgallari, F.: A flexible space-variant anisotropic regularization for image restoration with automated parameter selection. SIAM J. Imag. Sci. 12, 1001–1037 (2019)
Candes, E. J., Rechet, B.,: Exact low-rank matrix completion via convex optimization. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 806–812 (2008)
Chan, S.H., Gibson, K.B., Gill, P.E., Khoshabeh, R., Nguyen, T.Q.: An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 20, 3097–3111 (2011)
Chen, Y., Huang, T.-Z., Zhao, X.-L.: Destriping of multispectral remote sensing image using low-rank tensor decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 4950–4967 (2018)
Chen, Y., Feng, J., Lin, H., Liu, W., Lu, C., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42, 925–938 (2019)
Deng, L.-J., Huang, T.-Z., Ji, T.-Y., Jiang, T.-X., Zhao, X.-L.: Matrix factorization for low-rank tensor completion using framelet prior. Inf. Sci. 436, 403–417 (2018)
Ding, M., Huang, T.-Z., Ji, T.-Y., Yang, J.-H., Zhao, X.-L.: Low-rank tensor completion using matrix factorization based on tensor train rank and total variation. J. Sci. Comput. 81, 941–964 (2019)
Dong, W., Fu, Y.: 3D magnetic resonance image denoising using low-rank tensor approximation. Neurocomputing 195, 30–39 (2016)
El Guide, M., El Ichi, A., Jbilou, K., Sadaka, R.: On tensor GMRES and Golub–Kahan methods via the T-product for color image processing. Electron. J. Linear Algebra. 37, 524–543 (2021)
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2007)
Fan, Q., Gao, S.: A mixture of nuclear norm and matrix factorization for tensor completion. J. Sci. Comput. 75, 43–64 (2018)
Hao,R., Su,Z., Xu,Y., Yin, W.,: Parallel matrix factorization for low-rank tensor completion. arXiv preprint arXiv:1312.1254 (2013)
Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)
Hillar, C.J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60, 1–39 (2013)
Ji, T.-Y., Huang, T.-Z., Liu, G., Ma, T.-H., Zhao, X.-L.: Tensor completion using total variation and low-rank matrix factorization. Inf. Sci. 326, 243–257 (2016)
Kilmer, M.E., Carla, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)
Komodakis, N.,: Image completion using global optimization. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06),vol. 1, pp. 442–452 (2006)
Le, J., Lv, X.-G., Song, Y.-Z., Wang, S.-X.: Image restoration with a high-order total variation minimization method. Appl. Math. Model. 37, 8210–8224 (2013)
Li, F., Ng, M.K., Robert, R.J.: Coupled segmentation and denoising/deblurring models for hyperspectral material identification. Numer. Linear Algebra Appl. 19, 153–173 (2012)
Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011)
Rockafellar, R.T.: Convex Analysis, vol. 28. Princeton University Press, Princeton (1970)
Rojo, H., Rojo, O.: Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices. Linear Algebra Appl. 391, 211–233 (2004)
Rolant, R., Manikandan, M. S., Varghees, V. N.,: Adaptive MRI image denoising using total-variation and local noise estimation. In: IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM-2012), pp. 506–511 (2012)
Powell, M. J.,: A method for nonlinear constraints in minimization problems, Optimization. 283–298 (1969)
Tai, X.-C., Wu, C., Zhang, J.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems Imaging 5, 237 (2011)
Acknowledgements
The authors would like to thank the editor and anonymous referees for their valuable suggestions and constructive comments which improved the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Xiaojun Chen.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bentbib, A.H., Hachimi, A.E., Jbilou, K. et al. A Tensor Regularized Nuclear Norm Method for Image and Video Completion. J Optim Theory Appl 192, 401–425 (2022). https://doi.org/10.1007/s10957-021-01947-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-021-01947-3