Abstract
The goal of this paper is to investigate a new model, called generalized polynomial complementarity problems over a polyhedral cone and denoted by GPCPs, which is a natural extension of the polynomial complementarity problems and generalized tensor complementarity problems. Firstly, the properties of the set of all \(R^{K}_{{\varvec{0}}}\)-tensors are investigated. Then, the nonemptiness and compactness of the solution set of GPCPs are proved, when the involved tensor in the leading term of the polynomial is an \(ER^{K}\)-tensor. Subsequently, under fairly mild assumptions, lower bounds of solution set via an equivalent form are obtained. Finally, a local error bound of the considered problem is derived. The results presented in this paper generalize and improve the corresponding those in the recent literature.
Similar content being viewed by others
References
Andreani, R., Friedlande, A., Santos, S.A.: On the resolution of the generalized nonlinear complementarity problem. SIAM. J. Optimiz. 12(2), 303–321 (2001)
Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170(1), 72–84 (2016)
Bai, X.L., Huang, Z.H., Li, X.: Stability of solutions and continuity of solution maps of tensor complementarity problems. Asia Pac. J. Oper. Res. 36(2), 1940002 (2019)
Balaji, R., Palpandi, K.: Positive definite and Gram tensor complementarity problems. Optim. Lett. 12(3), 639–648 (2018)
Bochnak, R., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Berlin (1998)
Che, M.L., Qi, L.Q., Wei, Y.M.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168(2), 475–487 (2016)
Chen, H.B., Qi, L.Q., Song, Y.S.: Column sufficient tensors and tensor complementarity problems. Front. Math. China 13(2), 255–276 (2018)
Coste, M.: An Introduction to Semialgebraic Geometry, Universit\(\rm \acute{e}\) de Rennes, Institut de Recherche Math\(\acute{e}\)matique de Rennes (2002)
Dang, V.D., Ha, H.V., Pham, T.S.: Well-posedness in unconstrained polynomial optimization problems. SIAM J. Optim. 26, 1411–1428 (2016)
Ding, W.Y., Luo, Z.Y., Qi, L.Q.: P-tensors, P\(_{0}\)-tensors, and their applications. Linear Algebra Appl. 555, 336–354 (2018)
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I and II. Springer, New York (2003)
Gowda, M.S.: Polynomial complementarity problems. Pac. J. Optim. 13, 227–241 (2017)
Gowda, M.S., Sossa, D.: Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones. Math. Program. Ser. A 177, 149–171 (2019)
Guo, Q., Zheng, M.M., Huang, Z.H.: Properties of \(S\)-tensors. Linear Multilinear A. 67(4), 685–696 (2019)
Harker, P.T., Pang, J.S.: A damped-Newton method for the linear complementarity problem, Lectures in Appl. Math., 26, E.L. Allgower and K. George, eds., AMS, Providence, RI, 265-284 (1990)
Hieu, V.T.: On the \(R{\varvec {0}}\)-tensors and the solution map of tensor complementarity problems. J. Optim. Theory Appl. 181, 163–183 (2019)
Hieu, V.T.: Solution maps of polynomial variational inequalities. J. Glob. Optim. 77, 807–824 (2020)
Hu, S.L., Wang, J., Huang, Z.H.: Error bounds for the solution sets of quadratic complementarity problems. J. Optim. Theory Appl. 179, 983–1000 (2018)
Huang, Z.H., Qi, L.Q.: Formulating an \(n\)-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66(3), 557–576 (2017)
Huang, Z.H., Qi, L.Q.: Tensor complementarity problems\(-\)Part I: basic theory. J. Optim. Theory Appl. 183, 1–23 (2019)
Isac, G., Bulavski, V., Kalashnikov, V.: Exceptional families, topological degree and complementarity problems. J. Global Optim. 10, 207–225 (1997)
Isac, G., Carbone, A.: Exceptional families of elements for continuous functions: some applications to complementarity theory. J. Global Optim. 15(2), 181–196 (1999)
Kalashnikov, V.V., Isac, G.: Solvability of implicit complementarity problems. Ann. Oper. Res. 116(1), 199–221 (2002)
Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications, (New York: Academic Press) (1980)
Ling, L.Y., He, H.J., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67, 341–358 (2018)
Ling, L.Y., Ling, C., He, H.J.: Generalized tensor complementarity problems over a polyhedral cone. Asia Pac. J. Oper. Res. 2040006 (2020)
Ling, L.Y., Ling, C., He, H.J.: Properties of the solution set of generalized polynomial complementarity problems. Pac. J. Optim. 16(1), 155–174 (2020)
Liu, D.D., Li, W., Vong, S.W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear A. 66(9), 1726–1749 (2018)
Ma, X.X., Zheng, M.M., Huang, Z.H.: A note on the nonemptiness and compactness of solution sets of weakly homogeneous variational inequalities. SIAM J. Optim. 30(1), 132–148 (2020)
Mangasarian, O.L., Ren, J.: New error bounds for the nonlinear complementarity problem. Commun. Appl. Nonlinear Anal. 1, 49–56 (1994)
Qi, L.Q., Huang, Z.H.: Tensor complementarity problems\(-\)Part II: solution methods. J. Optim. Theory Appl. 183, 365–385 (2019)
Song, Y.S., Qi, L.Q.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169(3), 1069–1078 (2016)
Song, Y.S., Qi, L.Q.: Strictly semi-positive tensors and the boundedness of tensor complementarity problems. Optim. Lett. 11(7), 1407–1426 (2017)
Song, Y.S., Qi, L.Q.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33(3), 308–323 (2017)
Sun, H.C., Wang, Y.J.: Further discussion on the error bound for generalized linear complementarity problem over a polyhedral cone. J. Optim. Theory Appl. 159(1), 93–107 (2013)
Sun, H.C., Zhou, H.C., Ren, Q.J.: A projection-type method for the generalized linear complementarity problem over a polyhedral cone. Int. J. Pure Appl. Math. 36(3), 321–336 (2007)
Tu, L.W.: An Introduction to Manifolds, 2nd edn. Springer, Berlin (2010)
Wang, Y.J., Ma, F.M., Zhang, J.Z.: A nonsmooth LM method for solving the generalized nonlinear complementarity problem over a polyhedral cone. Appl. Math. Optim. 52(1), 73–92 (2005)
Wang, Y., Huang, Z.H., Bai, X.L.: Exceptionally regular tensors and tensor complementarity problems. Optim. Method Softw. 31(4), 815–828 (2016)
Wang, Y., Huang, Z.H., Qi, L.Q.: Global uniqueness and solvability of tensor variational inequalities. J. Optim. Theory Appl. 177(1), 137–152 (2018)
Xu, Y., Gu, W.Z., Huang, Z.H.: Estimations on upper and lower bounds of solutions to a class of tensor complementarity problems. Front. Math. China 14(3), 661–671 (2019)
Xu, Y., Gu, W.Z., Huang, H.: Solvability of two classes of tensor complementarity problems. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/6107517
Zhang, X.Z., Ma, F.M., Wang, Y.J.: A Newton-type algorithm for generalized linear complementarity problem over a polyhedral cone. Appl. Math. Comput. 169(1), 388–401 (2005)
Zheng, M.M., Zhang, Y., Huang, Z.H.: Global error bounds for the tensor complementarity problem with a P-tensor. J. Ind. Manag. Optim. 15(2), 933–946 (2019)
Zheng, M.M., Huang, Z.H., Ma, X.X.: Nonemptiness and compactness of solution sets to generalized polynomial complementarity problems. J. Optim. Theory Appl. 185(1), 80–98 (2020)
Acknowledgements
The authors are grateful to the Editor and the reviewers for their helpful comments and suggestions, which have improved the presentation of the paper. This work was partially supported by National Natural Science Foundation of China (No.11961006), Guangxi Natural Science Foundation (2020GXNSFAA159100), and Guangxi Science and Technology Project (GuiKe-AD18126010).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Alexey F. Izmailov.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shang, Tt., Yang, J. & Tang, Gj. Generalized Polynomial Complementarity Problems over a Polyhedral Cone. J Optim Theory Appl 192, 443–483 (2022). https://doi.org/10.1007/s10957-021-01969-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-021-01969-x
Keywords
- Generalized polynomial complementarity problem
- Polyhedral cone
- \(R^{K}_{{\varvec{0}}}\)-tensor
- Existence
- Lower bound
- Error bound