Skip to main content

Advertisement

Adaptive Global Algorithm for Solving Box-Constrained Non-convex Quadratic Minimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new adaptive method for solving the non-convex quadratic minimization problem subject to box constraints, where the associated matrix is indefinite, in particular with one negative eigenvalue. We investigate the derived sufficient global optimality conditions by exploiting the particular form of the Moreau envelope (L-subdifferential) of the quadratic function and abstract convexity, also to develop a new algorithm for solving the original problem without transforming it, that we call adaptive global algorithm, which can effectively find one global minimizer of the problem. Furthermore, the research of the convex support of the objective function allows us to characterize the global optimum and reduce the complexity of the big size problems. We give some theoretical aspects of global optimization and present numerical examples with test problems for illustrating our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajima, Y., Fujie, T.: A polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Glob. Optim. 13, 151–170 (1998)

    Article  MathSciNet  Google Scholar 

  2. Best, M.J., Ding, B.: Global and local quadratic minimization. J. Glob. Optim. 10, 77–90 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bibi, M.O., Ikeneche, N., Bentobache, M.: A hybrid direction algorithm for solving a convex quadratic problem. Int. J. Math. Oper. Res. 16(2), 159–178 (2020)

    Article  MathSciNet  Google Scholar 

  4. Bomze, I.M., Danninger, G.: A global optimization algorithm for concave quadratic programming problems. SIAM J. Optim. 3, 826–842 (1993)

    Article  MathSciNet  Google Scholar 

  5. Brahmi, B., Bibi, M.O.: Dual Support method for Solving convex quadratic programs. Optimization 59, 851–872 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cambini, R., Sodini, C.: A sequential method for a class of box constrained quadratic programming problems. Math. Meth. Oper. Res. 67, 223–243 (2008)

    Article  MathSciNet  Google Scholar 

  7. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Prog. Comp. 4, 33–52 (2012)

    Article  MathSciNet  Google Scholar 

  8. Coleman, T.F., Li, Y.: A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. Optim. 6, 1040–1058 (1996)

    Article  MathSciNet  Google Scholar 

  9. Coleman, T.F., Li, Y.: A trust region and affine scaling interior point method for nonconvex minimization with linear inequality constraints. Math. Prog. Ser. A 88, 1–31 (2000)

    Article  MathSciNet  Google Scholar 

  10. Fernandes, L., Fischer, A., Judice, J., Requejo, C., Soares, J.: A block active set algorithm for large-scale quadratic programing with box constraints. Ann. Oper. Res. 18, 75–95 (1998)

    Article  Google Scholar 

  11. Gabasov, R., Kirillova, F.M., Kostyukova, O.I., Raketsky, V.M.: Constructive Methods of Optimization: Part 4: Convex Problems. University Press, Minsk (1987)

    Google Scholar 

  12. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  13. Gratton, S., Simon, E., Toint, P.L.: An algorithm for the minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity. Math. Prog. 5, 1–24 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Han, C.G., Pardalos, P.M., Ye, Y.: On the solution of indefinite quadratic problems using an interior-point algorithm. Informatica 3, 474–496 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  16. Jeyakumar, V., Rubinov, A.M., Wu, Z.Y.: Sufficient global optimality conditions for nonconvex quadratic minimization problems with box constraints. J. Glob. Optim. 36, 471–481 (2006)

    Article  Google Scholar 

  17. Jeyakumar, V., Rubinov, A.M., Wu, Z.Y.: Generalized Fenchel’s conjugation formulas and duality for abstract convex functions. J. Optim. Theory Appl. 132, 441–458 (2007)

    Article  MathSciNet  Google Scholar 

  18. Kostina, E.A., Kostyukova, O.I.: An algorithm for solving quadratic programming problems with linear equality and inequality constraints. Comput. Math. Math. Phys. 41, 960–973 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Glob. Optim. 11, 253–285 (1997)

    Article  Google Scholar 

  20. Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: Convergence analysis of difference-of-convex algorithm with subanalytic data. J. Optim. Theory Appl. 179, 103–126 (2018)

    Article  MathSciNet  Google Scholar 

  21. Lu, C., Deng, Z.: DC decomposition based branch-and-bound algorithms for box-constrained quadratic programs. Optim. Lett. 12, 985–996 (2018)

    Article  MathSciNet  Google Scholar 

  22. Lua, Y., Pang, L.P., Liang, X.J., Xia, Z.Q.: An approximate decomposition algorithm for convex minimization. J. Comput. Appl. Math. 234, 658–666 (2010)

    Article  MathSciNet  Google Scholar 

  23. Mangasarian, O.L., Rosen, J.B., Thompson, M.E.: Nonconvex piecewise-quadratic underestimation for global minimization. J. Glob. Optim. 34, 475–488 (2006)

    Article  MathSciNet  Google Scholar 

  24. Martinez, J.M.: Local minimizers of quadratic functions on Euclidean balls and spheres. SIAM J. Optim. 4, 159–176 (1994)

    Article  MathSciNet  Google Scholar 

  25. Pardalos, P.M.: Global optimization algorithms for linearly constrained indefinite quadratic problems. Comput. Math. Appl. 59, 851–872 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Pardalos, P.M.: Construction of test problems in quadratic bivalent programming. Math. Softw. 17, 74–87 (1991)

    Article  MathSciNet  Google Scholar 

  27. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1, 15–22 (1991)

    Article  MathSciNet  Google Scholar 

  28. Pham Dinh, T., Le Thi, H.A., Akoa, F.: Combining DCA and interior point techniques for large-scale nonconvex quadratic programming. Optim. Method Softw. 23(4), 609–629 (2008)

    Article  MathSciNet  Google Scholar 

  29. Pinar, M.C.: Sufficient global optimality conditions for bivalent quadratic optimization. J. Optim. Theory Appl. 122(2), 433–440 (2004)

    Article  MathSciNet  Google Scholar 

  30. Radjef, S., Bibi, M.O.: An effective generalization of the direct support method in quadratic convex programming. Appl. Math. Sci. 6, 1525–1540 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Rubinov, A.M.: Abstract Convexity and Global Optimization. Kluwer Academic, Dordrecht (2000)

    Book  Google Scholar 

  32. Tuan, H.N.: Convergence rate of the Pham Dinh-Le Thi algorithm for the trust-region subproblem. J. Optim. Theory Appl. 154(3), 904–915 (2012)

    Article  MathSciNet  Google Scholar 

  33. Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Prog. 102, 559–575 (2005)

    Article  MathSciNet  Google Scholar 

  34. Wu, Z.Y.: Sufficient global optimality conditions for weakly convex minimization problems. J. Glob. Optim 39, 427–440 (2007)

    Article  MathSciNet  Google Scholar 

  35. Wu, Z.Y., Jeyakumar, V., Rubinov, A.M.: Sufficient conditions for globally optimality of bivalent nonconvex quadratic programs. J. Optim. Theory Appl. 133, 123–130 (2007)

    Article  MathSciNet  Google Scholar 

  36. Wu, Z.Y., Rubinov, A.M.: Global optimality conditions for some classes of optimization problems. J. Optim. Theory Appl. 145, 164–185 (2010)

    Article  MathSciNet  Google Scholar 

  37. Yi, S.N., Joaquim, J., An, L.T.H., Tao, P.D.: Improved DC programming approaches for solving the quadratic eigenvalue complementarity problem. Appl. Math. Comput. 353, 95–113 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees and Panos M. Pardalos for their valuable comments and suggestions, which helped to improve greatly the quality of the paper.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Panos M. Pardalos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andjouh, A., Bibi, M.O. Adaptive Global Algorithm for Solving Box-Constrained Non-convex Quadratic Minimization Problems. J Optim Theory Appl 192, 360–378 (2022). https://doi.org/10.1007/s10957-021-01980-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01980-2

Keywords