Skip to main content

Advertisement

Log in

Optimization of Thrust-Augmented Dynamic Soaring

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Dynamic soaring is a non-powered flight mode that enables to fly at no cost by gaining energy from a horizontal shear wind. This is not possible if the shear wind strength is too low. Engine thrust is introduced as a means to augment dynamic soaring in shear winds with insufficient strength. Appropriate models of the vehicle dynamics and the shear wind are developed, and an optimization method is used to construct results on optimal thrust-augmented dynamic soaring. The minimum energy required from the propulsion system is determined for the entire region of insufficient shear wind strength down to zero wind. Solutions of the characteristics of the motion including states and controls are presented. Furthermore, it is shown what a control simplification in terms of an optimal constant power setting as an ease of control yields for the energy required from the propulsion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bird, J.J., Langelaan, J.W., Montella, C., Spletzer, J., Grenestedt, J.: Closing the loop in dynamic soaring.In: Proceedings of the AIAA Guidance, Navigation and Control Conference. National Harbor, Maryland, 13–17 Jan 2014, pp. 1–19. American Institute of Aeronautics and Astronautics, Reston, VA, USA (2014)

  2. Bonadonna, F., Bajzak, C., Benhamou, S., Igloi, K., Jouventin, P., Lipp, H.P., Dell’Omo, G.: Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance. Proc. R. Soc. B 272, 489–495 (2005)

    Article  Google Scholar 

  3. Bonnin, V., Toomer, Chr., Moschetta, J.-M., Benard, E.: Energy harvesting mechanisms for UAV flight by dynamic soaring. In: Peroceedings of the AIAA Atmospheric Flight Mechanics Conference 2013. Boston, Massachusetts, USA, 19–22 Aug 2013, pp. 761–774. American Institute of Aeronautics and Astronautics, Reston, VA, USA (2013)

  4. Cone, C.D., Jr.: A Mathematical analysis of the dynamic soaring flight of the Albatross with ecological interpretations. Virginia Institute of Marine Science, Gloucester Point, Virginia, Special Scientific Report·No. 50 (1964)

  5. Croxall, J.P., Silk, J.R.D., Phillips, R.A., Afanasyev, V., Briggs, D.R.: Global circumnavigations: tracking year-round ranges of nonbreeding Albatrosses. Science 307, 249–250 (2005)

    Article  Google Scholar 

  6. Deittert, M., Richards, A., Toomer, C.A., Pipe, A.: Engineless unmanned aerial vehicle propulsion by dynamic soaring. J. Guid. Control. Dyn. 32, 1446–1457 (2009)

    Article  Google Scholar 

  7. Idrac, P.: Experimentelle Untersuchungen über den Segelflug mitten im Fluggebiet großer segelnder Vögel (Geier, Albatros usw.)—Ihre Anwendung auf den Segelflug des Menschen. München und Berlin: Verlag von R. Oldenbourg (1932)

  8. Jouventin, P., Weimerskirch, H.: Satellite tracking of wandering Albatrosses. Nature 343, 746–748 (1990)

    Article  Google Scholar 

  9. Langelaan, J.W., Roy, N.: Enabling new missions for small robotic aircraft. Science 326, 1642–1644 (2009)

    Article  Google Scholar 

  10. Lawrance, N.R.J., Sukkarieh, S.: A guidance and control strategy for dynamic soaring with a gliding UAV. IEEE, 978-1-4244-2789-5, Institute of Electrical and Electronics Engineers, New York, NY, USA (2009)

  11. Li, Z., Langelaan, J.W.: Parameterized trajectory planning for dynamic soaring. AIAA SciTech Forum, 6–10 Jan 2020, Orlando, FL. AIAA.2020-0856, pp. 1–24. American Institute of Aeronautics and Astronautics, Reston, VA, USA (2020)

  12. Liu, D.N., Hou, Z.X., Guo, Z., Yang, X.X., Gao, X.Z.: Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring. Bioinspir. Biomim. 12, 016014 (2017)

    Article  Google Scholar 

  13. Richardson, P.L.: Upwind dynamic soaring of albatrosses and UAVs. Prog. Oceanogr. 130, 146–156 (2015)

    Article  Google Scholar 

  14. Rieck, M., Bittner, M., Grüter, B., and Diepolder, J.: FALCON.m—User uide, Institute of Flight System Dynamics, Technische Universität München (2016)

  15. Sachs, G.: Minimum shear wind strength required for dynamic soaring of albatrosses. Ibis 147, 1–10 (2005)

    Article  Google Scholar 

  16. Sachs, G., Grüter, B.: Maximum travel speed performance of Albatrosses and UAVs using dynamic soaring. AIAA SciTech Forum, 7–11 Jan 2019. San Diego, California. AIAA 2019-0568, pp. 1–15. American Institute of Aeronautics and Astronautics, Reston, VA, USA (2019)

  17. Sachs, G., Traugott, J., Nesterova, A.P., Bonadonna, F.: Experimental verification of dynamic soaring in albatrosses. J. Exp. Biol. 216, 4222–4232 (2013)

    Article  Google Scholar 

  18. Stull, R.B.: An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  19. Wächter, A., Biegler, L.T.: “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. Ser. A 106, 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  20. Zhao, Y.J., Qi, Y.C.: Minimum fuel powered dynamic soaring of unmanned aerial vehicles utilizing wind gradients. Optim. Control Appl. Meth. 25, 211–233 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottfried Sachs.

Additional information

Communicated by Ryan Russell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachs, G., Grüter, B. Optimization of Thrust-Augmented Dynamic Soaring. J Optim Theory Appl 192, 960–978 (2022). https://doi.org/10.1007/s10957-021-01999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01999-5

Keywords

Navigation