Skip to main content

Advertisement

Log in

Solving Two-Trust-Region Subproblems Using Semidefinite Optimization with Eigenvector Branching

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Semidefinite programming (SDP) problems typically utilize a constraint of the form \(X\succeq xx^T\) to obtain a convex relaxation of the condition \(X=xx^T\), where \(x\in \mathbb {R}^n\). In this paper, we consider a new hyperplane branching method for SDP based on using an eigenvector of \(X-xx^T\). This branching technique is related to previous work of Saxeena et al. (Math Prog Ser B 124:383–411, 2010, https://doi.org/10.1007/s10107-010-0371-9) who used such an eigenvector to derive a disjunctive cut. We obtain excellent computational results applying the new branching technique to difficult instances of the two-trust-region subproblem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Data for these problem instances are available from the author on request.

References

  1. Ai, W., Zhang, S.: Strong duality for the CDT subproblem: a necessary and sufficient condition. SIAM J. Optim. 19(4), 1735–1756 (2008). https://doi.org/10.1137/07070601X

    Article  MathSciNet  Google Scholar 

  2. Anstreicher, K.M.: Kronecker product constraints with an application to the two-trust-region subproblem. SIAM J. Optim. 27, 368–378 (2017). https://doi.org/10.1137/16M1078859

    Article  MathSciNet  Google Scholar 

  3. Barvinok, A.I.: Feasibility testing for systems of real quadratic equations. Discrete Comput. Geom. 10(1), 1–13 (1993). https://doi.org/10.1007/BF02573959

    Article  MathSciNet  Google Scholar 

  4. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17(3), 844–860 (2006). https://doi.org/10.1137/050644471

    Article  MathSciNet  Google Scholar 

  5. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013). https://doi.org/10.1017/S0962492913000032

    Article  MathSciNet  Google Scholar 

  6. Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009). https://doi.org/10.1080/10556780903087124

    Article  MathSciNet  Google Scholar 

  7. Bienstock, D.: A note on polynomial solvability of the CDT problem. SIAM J. Optim. 26, 488–498 (2016). https://doi.org/10.1137/15M1009871

    Article  MathSciNet  Google Scholar 

  8. Bomze, I.M., Overton, M.L.: Narrowing the difficulty gap for the Celis-Dennis-Tapia problem. Math. Prog. 151(2), 459–476 (2015). https://doi.org/10.1007/s10107-014-0836-3

    Article  MathSciNet  Google Scholar 

  9. Burer, S.: Private communication (2022)

  10. Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013). https://doi.org/10.1137/110826862

    Article  MathSciNet  Google Scholar 

  11. Celis, M.R., Dennis, J.E., Tapia, R.A.: A trust region strategy for nonlinear equality constrained optimization. In: Numerical Optimization, 1984 (Boulder, Colo., 1984), pp. 71–82. SIAM, Philadelphia, PA (1985)

  12. Conn, A., Gould, N., Toint, P.: Trust Region Methods. Society for Industrial and Applied Mathematics, Philadelphia (2000). https://doi.org/10.1137/1.9780898719857

    Book  Google Scholar 

  13. Consolini, L., Locatelli, M.: Sharp and fast bounds for the Celia-Dennis-Tapia problem. Tech. rep., Dipartimento di Ingegneria e Architettura, Università di Parma (2022)

  14. Couenne: https://www.coin-or.org/Couenne/

  15. Fu, M., Luo, Z.Q., Ye, Y.: Approximation algorithms for quadratic programming. J. Comb. Optim. 2(1), 29–50 (1998). https://doi.org/10.1023/A:1009739827008

    Article  MathSciNet  Google Scholar 

  16. Nemirovski, A., Roos, C., Terlaky, T.: On maximization of a quadratic form over the intersection of ellipsoids with common center. Math. Prog. 86, 463–473 (1999). https://doi.org/10.1007/s101079900099

    Article  MathSciNet  Google Scholar 

  17. Peng, J.M., Yuan, Y.X.: Optimality conditions for the minimization of a quadratic with two quadratic constraints. SIAM J. Optim. 7(3), 579–594 (1997). https://doi.org/10.1137/S1052623494261520

    Article  MathSciNet  Google Scholar 

  18. Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Prog. 77(1), 273–299 (1997). https://doi.org/10.1007/BF02614438

    Article  MathSciNet  Google Scholar 

  19. Sahinidis, N.: BARON: a general purpose global optimization software package. J. Global Optim. 8, 201–205 (1996). https://doi.org/10.1007/BF00138693

    Article  MathSciNet  Google Scholar 

  20. Saxeena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Prog. Ser. B 124, 383–411 (2010). https://doi.org/10.1007/s10107-010-0371-9

    Article  MathSciNet  Google Scholar 

  21. Sherali, H., Adams, W.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1998)

    Google Scholar 

  22. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996). https://doi.org/10.1137/1038003

    Article  MathSciNet  Google Scholar 

  23. Yang, B., Burer, S.: A two-variable approach to the two-trust-region subproblem. SIAM J. Optim. 26(1), 661–680 (2016). https://doi.org/10.1137/130945880

    Article  MathSciNet  Google Scholar 

  24. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003). https://doi.org/10.1137/S105262340139001X

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Sam Burer for helpful discussions on the topic of this paper and to Marco Locatelli for providing details of the computational results in [13]. I would also like to thank two anonymous referees for their careful readings of the paper and suggestions for improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt M. Anstreicher.

Additional information

Communicated by Etienne de Klerk.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anstreicher, K.M. Solving Two-Trust-Region Subproblems Using Semidefinite Optimization with Eigenvector Branching. J Optim Theory Appl 202, 303–319 (2024). https://doi.org/10.1007/s10957-022-02064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02064-5

Keywords

Mathematics Subject Classification