Abstract
Semidefinite programming (SDP) problems typically utilize a constraint of the form \(X\succeq xx^T\) to obtain a convex relaxation of the condition \(X=xx^T\), where \(x\in \mathbb {R}^n\). In this paper, we consider a new hyperplane branching method for SDP based on using an eigenvector of \(X-xx^T\). This branching technique is related to previous work of Saxeena et al. (Math Prog Ser B 124:383–411, 2010, https://doi.org/10.1007/s10107-010-0371-9) who used such an eigenvector to derive a disjunctive cut. We obtain excellent computational results applying the new branching technique to difficult instances of the two-trust-region subproblem.









Similar content being viewed by others
Notes
Data for these problem instances are available from the author on request.
References
Ai, W., Zhang, S.: Strong duality for the CDT subproblem: a necessary and sufficient condition. SIAM J. Optim. 19(4), 1735–1756 (2008). https://doi.org/10.1137/07070601X
Anstreicher, K.M.: Kronecker product constraints with an application to the two-trust-region subproblem. SIAM J. Optim. 27, 368–378 (2017). https://doi.org/10.1137/16M1078859
Barvinok, A.I.: Feasibility testing for systems of real quadratic equations. Discrete Comput. Geom. 10(1), 1–13 (1993). https://doi.org/10.1007/BF02573959
Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17(3), 844–860 (2006). https://doi.org/10.1137/050644471
Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013). https://doi.org/10.1017/S0962492913000032
Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009). https://doi.org/10.1080/10556780903087124
Bienstock, D.: A note on polynomial solvability of the CDT problem. SIAM J. Optim. 26, 488–498 (2016). https://doi.org/10.1137/15M1009871
Bomze, I.M., Overton, M.L.: Narrowing the difficulty gap for the Celis-Dennis-Tapia problem. Math. Prog. 151(2), 459–476 (2015). https://doi.org/10.1007/s10107-014-0836-3
Burer, S.: Private communication (2022)
Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013). https://doi.org/10.1137/110826862
Celis, M.R., Dennis, J.E., Tapia, R.A.: A trust region strategy for nonlinear equality constrained optimization. In: Numerical Optimization, 1984 (Boulder, Colo., 1984), pp. 71–82. SIAM, Philadelphia, PA (1985)
Conn, A., Gould, N., Toint, P.: Trust Region Methods. Society for Industrial and Applied Mathematics, Philadelphia (2000). https://doi.org/10.1137/1.9780898719857
Consolini, L., Locatelli, M.: Sharp and fast bounds for the Celia-Dennis-Tapia problem. Tech. rep., Dipartimento di Ingegneria e Architettura, Università di Parma (2022)
Couenne: https://www.coin-or.org/Couenne/
Fu, M., Luo, Z.Q., Ye, Y.: Approximation algorithms for quadratic programming. J. Comb. Optim. 2(1), 29–50 (1998). https://doi.org/10.1023/A:1009739827008
Nemirovski, A., Roos, C., Terlaky, T.: On maximization of a quadratic form over the intersection of ellipsoids with common center. Math. Prog. 86, 463–473 (1999). https://doi.org/10.1007/s101079900099
Peng, J.M., Yuan, Y.X.: Optimality conditions for the minimization of a quadratic with two quadratic constraints. SIAM J. Optim. 7(3), 579–594 (1997). https://doi.org/10.1137/S1052623494261520
Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Prog. 77(1), 273–299 (1997). https://doi.org/10.1007/BF02614438
Sahinidis, N.: BARON: a general purpose global optimization software package. J. Global Optim. 8, 201–205 (1996). https://doi.org/10.1007/BF00138693
Saxeena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Prog. Ser. B 124, 383–411 (2010). https://doi.org/10.1007/s10107-010-0371-9
Sherali, H., Adams, W.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1998)
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996). https://doi.org/10.1137/1038003
Yang, B., Burer, S.: A two-variable approach to the two-trust-region subproblem. SIAM J. Optim. 26(1), 661–680 (2016). https://doi.org/10.1137/130945880
Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003). https://doi.org/10.1137/S105262340139001X
Acknowledgements
I am grateful to Sam Burer for helpful discussions on the topic of this paper and to Marco Locatelli for providing details of the computational results in [13]. I would also like to thank two anonymous referees for their careful readings of the paper and suggestions for improvements.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Etienne de Klerk.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Anstreicher, K.M. Solving Two-Trust-Region Subproblems Using Semidefinite Optimization with Eigenvector Branching. J Optim Theory Appl 202, 303–319 (2024). https://doi.org/10.1007/s10957-022-02064-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-022-02064-5
Keywords
- Semidefinite programming
- Semidefinite optimization
- Conic optimization
- Nonconvex quadratic programming
- Trust region subproblem