Abstract
The Gale–Nikaido–Debreu lemma plays an important role in establishing the existence of competitive equilibrium. In this paper, we use Sperner’s lemma and basic elements of topology to prove the Gale–Nikaido–Debreu lemma.
Similar content being viewed by others
Notes
Looking back at history, Debreu [9] used the Eilenberg–Montgomery fixed point theorem to prove the existence of a social equilibrium. Then, by using this social equilibrium existence theorem, Arrow and Debreu [1] proved the existence of a general equilibrium for a competitive economy with productions. See Debreu [12] and Florenzano [16] for excellent treatments of the existence of equilibrium. See also Duppe and Weintraub [13], Khan [25] for discussions about the history of the general equilibrium theory.
Another important lemma in the general equilibrium theory is Gale and Mas-Colell’s lemma introduced and proved by Gale and Mas-Colell [21, 22]. Their proofs are based on the Kakutani fixed point theorem and Michael selection theorem [30]. See Florenzano [17] for the role of these two lemmas in the general equilibrium theory.
Sperner’s lemma [37] can be viewed as a combinatorial variant of the Brouwer fixed point theorem [5, 23] and actually equivalent to it. For instance, Knaster, Kuratowski and Mazurkiewicz [25] used the Sperner lemma to prove the Knaster–Kuratowski–Mazurkiewicz theorem which implies the Brouwer theorem. Meanwhile, Yoseloff [40], Park and Jeong [34] proved the Sperner lemma by using the Brouwer theorem. The reader is referred to Park [33] for a more complete survey of fixed point theorems and Ben-El-Mechaiekh, Bich, and Florenzano [3] for a survey of general equilibrium and fixed point theory.
Recall that if \(\varDelta _i = [[ x^{i_1}, x^{i_2}, \ldots , x^{i_m}]]\), then \(\hbox {ri}(\varDelta _i) \equiv \{ x| x=\sum _{k=1} ^m \alpha _k x^k (i);\sum _k \alpha _k =1\); and \(\forall k: \alpha (k)>0\}\).
These functions \(\alpha _i\) constitute a partition of unity subordinate to the covering \(\big (B \left( x^i (\epsilon ), \epsilon \right) \big )_{i=1, \ldots , I(\epsilon )}\). See, for instance, Section 2.19 in Aliprantis and Border [1].
Carathéodory’s convexity theorem states that: In an n-dimensional vector space, every vector in the convex hull of a non-empty set can be written as a convex combination using no more than \(n+1\) vectors from the set. For a simple proof, see Proposition 1.1.2 in Florenzano and Le Van [19] or Theorem 5.32 in Aliprantis and Border [1].
References
Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)
Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)
Ben-El-Mechaiekh, H., Bich, P., Florenzano, M.: General equilibrium and fixed point theory: a partial survey. CES Working Paper Series (2009)
Berge, C.: Espaces Topologiques et Fonctions Multivoques. Dunod, Paris (1959)
Brouwer, L.E.J.: Uber Abbildung von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1911)
Border, K.C.: Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge (1985)
Carathéodory, C.: Uber den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64(1), 95–115 (1907). (in German)
Cohen, D.I.A.: On Sperner lemma. J. Comb. Theory 2, 585–587 (1967)
Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. 38(10), 886–893 (1952)
Debreu, G.: Market equilibrium. Proc. Natl. Acad. Sci. 42(11), 876–878 (1956)
Debreu, G.: Theory of Value: An Axiomatic Analysis of Economic Equilibrium. Wiley, New York (1959)
Debreu, G.: Existence of competitive equilibrium. In: Arrow, K., Kirman, A. (eds.) Handbook of Mathematical Economics, vol. II. North-Holland, Amsterdam (1982)
Duppe, T., Weintraud, E.R.: Finding Equilibrium: Arrow, Debreu, McKenzie and the Problem of Scientific Credit. Princeton University Press, Princeton (2014)
Florenzano, M.: L’Équilibre économique général transitif et intransitif: problemes d’existence. Monographies du Séminaire d’Économétrie, Editions du CNRS (1981)
Florenzano, M.: The Gale–Nikaido–Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption. J. Math. Econ. 9, 113–134 (1982)
Florenzano, M.: General Equilibrium Analysis: Existence and Optimality Properties of Equilibria. Springer, Berlin (2003)
Florenzano, M.: Two lemmas that changed general equilibrium theory. CES Working Paper Series (2009)
Florenzano, M., Le Van, C.: A note on the Gale–Nikaido–Debreu lemma and the existence of general equilibrium. Econ. Lett. 22, 107–110 (1986)
Florenzano, M., Le Van, C.: Finite Dimensional Convexity and Optimization. Springer, Berlin (2001)
Gale, D.: The law of supply and demand. Math. Scand. 3, 155–169 (1955)
Gale, D., Mas-Colell, A.: An equilibrium existence theorem for a general model without ordered preferences. J. Math. Econ. 2, 9–15 (1975)
Gale, D., Mas-Colell, A.: Corrections to an equilibrium existence theorem for a general model without ordered preferences. J. Math. Econ. 6, 297–298 (1975)
Hadamard, J.: Note sur quelques applications de l’indice de Kronecker. In: Tannery, J. (ed.) Introduction à la Théorie des Fonctions d’une Variable, vol. 2, 2nd edn., pp. 437–477. A. Hermann & Fils, Paris (1910)
Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–459 (1941)
Khan, M.A.: On the finding of an equilibrium: Duppe–Weintraud and the problem of scientific credit. J. Econ. Lit. 59, 590–633 (2021)
Knaster, B., Kuratowski, K., Mazurkiewicz, S.: A Ein Beweis des Fixpunktsatzes fur n-Dimensionale Simplexe. Fund. Math. 14, 132–137 (1929)
Kuhn, H.W.: A note on “the law of supply and demand’’. Math. Scand. 4(1), 143–146 (1956)
Kuhn, H.W.: Simplicial approximations of fixed points. Proc. Natl. Acad. Sci. U. S. A. 61, 1238–1242 (1968)
Le Van, C.: Topological degree and the Sperner lemma. J. Optim. Theory Appl. 37, 371–377 (1982)
Michael, E.: Continuous selections. I. Ann. Math. Second Ser. 63(2), 361–382 (1956)
Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press, Cambridge (2013)
Nikaido, H.: On the classical multilateral exchange problem. Metroeconomica 8, 135–145 (1956)
Park, S.: Ninety years of the Brouwer fixed point theorem. Vietnam J. Math. 27(3), 187–222 (1999)
Park, S., Jeong, K.S.: The proof of the Sperner lemma from the Brouwer fixed point theorem. https://www.researchgate.net/publication/264969230 (2003)
Scarf, H., Hansen, T.: The Computation of Economic Equilibria. Yale University Press, New Haven (1973)
Scarf, H.: The computation of equilibrium prices: an exposition. In: Arrow, K., Kirman, A. (eds.) Handbook of Mathematical Economics, vol. II. North-Holland, Amsterdam (1982)
Sperner, E.: Neuer Beweis fur die Invarianz der Dimensionszahl und des Gebietes. Abh. Math. Semin. Univ. Hambg. 6, 265–272 (1928)
Su, F.E.: Rental Harmony: Sperner lemma in Fair Division. Am. Math. Mon. 106(10), 930–942 (1999)
Uzawa, H.: Walras existence theorem and Brouwer’s fixed point theorem. Econ. Stud. Q. 13, 59–62 (1962)
Yoseloff, M.: Topological proofs of some combinatorial theorems. J. Comb. Theory Ser. A 17, 95–111 (1974)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Josh Taylor.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
We would like to thank an Associate Editor and two Referees for their helpful and insightful comments which help us to substantially improve our paper.
Rights and permissions
About this article
Cite this article
Le, T., Le Van, C., Pham, NS. et al. A Direct Proof of the Gale–Nikaido–Debreu Lemma Using Sperner’s Lemma. J Optim Theory Appl 194, 1072–1080 (2022). https://doi.org/10.1007/s10957-022-02067-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-022-02067-2