Skip to main content

Advertisement

Log in

A Direct Proof of the Gale–Nikaido–Debreu Lemma Using Sperner’s Lemma

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The Gale–Nikaido–Debreu lemma plays an important role in establishing the existence of competitive equilibrium. In this paper, we use Sperner’s lemma and basic elements of topology to prove the Gale–Nikaido–Debreu lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Looking back at history, Debreu [9] used the Eilenberg–Montgomery fixed point theorem to prove the existence of a social equilibrium. Then, by using this social equilibrium existence theorem, Arrow and Debreu [1] proved the existence of a general equilibrium for a competitive economy with productions. See Debreu [12] and Florenzano [16] for excellent treatments of the existence of equilibrium. See also Duppe and Weintraub [13], Khan [25] for discussions about the history of the general equilibrium theory.

  2. Another important lemma in the general equilibrium theory is Gale and Mas-Colell’s lemma introduced and proved by Gale and Mas-Colell [21, 22]. Their proofs are based on the Kakutani fixed point theorem and Michael selection theorem [30]. See Florenzano [17] for the role of these two lemmas in the general equilibrium theory.

  3. Sperner’s lemma [37] can be viewed as a combinatorial variant of the Brouwer fixed point theorem [5, 23] and actually equivalent to it. For instance, Knaster, Kuratowski and Mazurkiewicz [25] used the Sperner lemma to prove the Knaster–Kuratowski–Mazurkiewicz theorem which implies the Brouwer theorem. Meanwhile, Yoseloff [40], Park and Jeong [34] proved the Sperner lemma by using the Brouwer theorem. The reader is referred to Park [33] for a more complete survey of fixed point theorems and Ben-El-Mechaiekh, Bich, and Florenzano [3] for a survey of general equilibrium and fixed point theory.

  4. Recall that if \(\varDelta _i = [[ x^{i_1}, x^{i_2}, \ldots , x^{i_m}]]\), then \(\hbox {ri}(\varDelta _i) \equiv \{ x| x=\sum _{k=1} ^m \alpha _k x^k (i);\sum _k \alpha _k =1\); and \(\forall k: \alpha (k)>0\}\).

  5. These functions \(\alpha _i\) constitute a partition of unity subordinate to the covering \(\big (B \left( x^i (\epsilon ), \epsilon \right) \big )_{i=1, \ldots , I(\epsilon )}\). See, for instance, Section 2.19 in Aliprantis and Border [1].

  6. Carathéodory’s convexity theorem states that: In an n-dimensional vector space, every vector in the convex hull of a non-empty set can be written as a convex combination using no more than \(n+1\) vectors from the set. For a simple proof, see Proposition 1.1.2 in Florenzano and Le Van [19] or Theorem 5.32 in Aliprantis and Border [1].

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)

    Article  MathSciNet  Google Scholar 

  3. Ben-El-Mechaiekh, H., Bich, P., Florenzano, M.: General equilibrium and fixed point theory: a partial survey. CES Working Paper Series (2009)

  4. Berge, C.: Espaces Topologiques et Fonctions Multivoques. Dunod, Paris (1959)

    MATH  Google Scholar 

  5. Brouwer, L.E.J.: Uber Abbildung von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1911)

    Article  MathSciNet  Google Scholar 

  6. Border, K.C.: Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  7. Carathéodory, C.: Uber den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64(1), 95–115 (1907). (in German)

    Article  MathSciNet  Google Scholar 

  8. Cohen, D.I.A.: On Sperner lemma. J. Comb. Theory 2, 585–587 (1967)

    Article  MathSciNet  Google Scholar 

  9. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. 38(10), 886–893 (1952)

    Article  MathSciNet  Google Scholar 

  10. Debreu, G.: Market equilibrium. Proc. Natl. Acad. Sci. 42(11), 876–878 (1956)

    Article  MathSciNet  Google Scholar 

  11. Debreu, G.: Theory of Value: An Axiomatic Analysis of Economic Equilibrium. Wiley, New York (1959)

    MATH  Google Scholar 

  12. Debreu, G.: Existence of competitive equilibrium. In: Arrow, K., Kirman, A. (eds.) Handbook of Mathematical Economics, vol. II. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  13. Duppe, T., Weintraud, E.R.: Finding Equilibrium: Arrow, Debreu, McKenzie and the Problem of Scientific Credit. Princeton University Press, Princeton (2014)

    Book  Google Scholar 

  14. Florenzano, M.: L’Équilibre économique général transitif et intransitif: problemes d’existence. Monographies du Séminaire d’Économétrie, Editions du CNRS (1981)

  15. Florenzano, M.: The Gale–Nikaido–Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption. J. Math. Econ. 9, 113–134 (1982)

    Article  MathSciNet  Google Scholar 

  16. Florenzano, M.: General Equilibrium Analysis: Existence and Optimality Properties of Equilibria. Springer, Berlin (2003)

    Book  Google Scholar 

  17. Florenzano, M.: Two lemmas that changed general equilibrium theory. CES Working Paper Series (2009)

  18. Florenzano, M., Le Van, C.: A note on the Gale–Nikaido–Debreu lemma and the existence of general equilibrium. Econ. Lett. 22, 107–110 (1986)

    Article  MathSciNet  Google Scholar 

  19. Florenzano, M., Le Van, C.: Finite Dimensional Convexity and Optimization. Springer, Berlin (2001)

    Book  Google Scholar 

  20. Gale, D.: The law of supply and demand. Math. Scand. 3, 155–169 (1955)

    Article  MathSciNet  Google Scholar 

  21. Gale, D., Mas-Colell, A.: An equilibrium existence theorem for a general model without ordered preferences. J. Math. Econ. 2, 9–15 (1975)

    Article  MathSciNet  Google Scholar 

  22. Gale, D., Mas-Colell, A.: Corrections to an equilibrium existence theorem for a general model without ordered preferences. J. Math. Econ. 6, 297–298 (1975)

    Article  Google Scholar 

  23. Hadamard, J.: Note sur quelques applications de l’indice de Kronecker. In: Tannery, J. (ed.) Introduction à la Théorie des Fonctions d’une Variable, vol. 2, 2nd edn., pp. 437–477. A. Hermann & Fils, Paris (1910)

    Google Scholar 

  24. Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–459 (1941)

    Article  MathSciNet  Google Scholar 

  25. Khan, M.A.: On the finding of an equilibrium: Duppe–Weintraud and the problem of scientific credit. J. Econ. Lit. 59, 590–633 (2021)

    Article  Google Scholar 

  26. Knaster, B., Kuratowski, K., Mazurkiewicz, S.: A Ein Beweis des Fixpunktsatzes fur n-Dimensionale Simplexe. Fund. Math. 14, 132–137 (1929)

    Article  Google Scholar 

  27. Kuhn, H.W.: A note on “the law of supply and demand’’. Math. Scand. 4(1), 143–146 (1956)

    Article  MathSciNet  Google Scholar 

  28. Kuhn, H.W.: Simplicial approximations of fixed points. Proc. Natl. Acad. Sci. U. S. A. 61, 1238–1242 (1968)

    Article  MathSciNet  Google Scholar 

  29. Le Van, C.: Topological degree and the Sperner lemma. J. Optim. Theory Appl. 37, 371–377 (1982)

    Article  MathSciNet  Google Scholar 

  30. Michael, E.: Continuous selections. I. Ann. Math. Second Ser. 63(2), 361–382 (1956)

    Article  MathSciNet  Google Scholar 

  31. Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  32. Nikaido, H.: On the classical multilateral exchange problem. Metroeconomica 8, 135–145 (1956)

    Article  MathSciNet  Google Scholar 

  33. Park, S.: Ninety years of the Brouwer fixed point theorem. Vietnam J. Math. 27(3), 187–222 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Park, S., Jeong, K.S.: The proof of the Sperner lemma from the Brouwer fixed point theorem. https://www.researchgate.net/publication/264969230 (2003)

  35. Scarf, H., Hansen, T.: The Computation of Economic Equilibria. Yale University Press, New Haven (1973)

    Google Scholar 

  36. Scarf, H.: The computation of equilibrium prices: an exposition. In: Arrow, K., Kirman, A. (eds.) Handbook of Mathematical Economics, vol. II. North-Holland, Amsterdam (1982)

    Google Scholar 

  37. Sperner, E.: Neuer Beweis fur die Invarianz der Dimensionszahl und des Gebietes. Abh. Math. Semin. Univ. Hambg. 6, 265–272 (1928)

    Article  MathSciNet  Google Scholar 

  38. Su, F.E.: Rental Harmony: Sperner lemma in Fair Division. Am. Math. Mon. 106(10), 930–942 (1999)

    Article  MathSciNet  Google Scholar 

  39. Uzawa, H.: Walras existence theorem and Brouwer’s fixed point theorem. Econ. Stud. Q. 13, 59–62 (1962)

    Google Scholar 

  40. Yoseloff, M.: Topological proofs of some combinatorial theorems. J. Comb. Theory Ser. A 17, 95–111 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc-Sang Pham.

Additional information

Communicated by Josh Taylor.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We would like to thank an Associate Editor and two Referees for their helpful and insightful comments which help us to substantially improve our paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T., Le Van, C., Pham, NS. et al. A Direct Proof of the Gale–Nikaido–Debreu Lemma Using Sperner’s Lemma. J Optim Theory Appl 194, 1072–1080 (2022). https://doi.org/10.1007/s10957-022-02067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02067-2

Keywords