Skip to main content
Log in

Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper is introduced a proposal of resolvent for equilibrium problems in terms of the Busemann’s function. A advantage of this new proposal is that, in addition to be a natural extension of its counterpart in the linear setting introduced by Combettes and Hirstoaga (J Nonlinear Convex Anal 6(1): 117–136, 2005), the new term that performs regularization is a convex function in general Hadamard manifolds, being a first step to fully answer to the problem posed by Cruz Neto et al. (J Convex Anal 24(2): 679–684, 2017 Section 5). During our study, some elements of convex analysis are explored in the context of Hadamard manifolds, which are interesting on their own. In particular, we introduce a new definition of convex combination (now commutative) of any finite collection of points and present an associated Jensen-type inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control. Optim. 51(3), 2230–2260 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imaging Vis. 58(2), 211–238 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. 24(3), 1542–1566 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Batista, E.E., Bento, G.C., Ferreira, O.P.: An extragradient-type algorithm for variational inequality on Hadamard manifolds. ESAIM - Control Optim. Calc. Var. 26(63), 1–16 (2020)

    MATH  MathSciNet  Google Scholar 

  5. Batista, E.E., Bento, G.C., Ferreira, O.P.: An existence result for the generalized vector equilibrium problem on Hadamard manifolds. J. Optim. Theory Appl. 167(2), 550–557 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces, volume 22 of De Gruyter Series in Nonlinear Analysis and Applications De Gruyter, Berlin (2014)

  7. Bento, G.C., Cruz Neto, J.X., Soares, P.A., Jr., Soubeyran, A.: A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires. Ann. Oper. Res. (2021). https://doi.org/10.1007/s10479-021-04052-w

    Article  MATH  Google Scholar 

  8. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64(2), 289–319 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berger, M.: A Panoramic view of Riemannian Geometry. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  10. Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90(1), 31–43 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438(4), 1700–1710 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Blum, E.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-Positive Curvature, vol. 319. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  14. Busemann, H.: The Geometry of Geodesics. Press, New York (1955)

    MATH  Google Scholar 

  15. Busemann, H., Phadke, B.: Novel Results in the geometry of geodesics. Adv. Math. 101(2), 180–219 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Carathéodory, C.: Über den variabilitätsbereich der koeffizienten von potenzreihen, die gegebene werte nicht annehmen. Math. Ann. 64(1), 95–115 (1907)

    Article  MATH  MathSciNet  Google Scholar 

  17. Carmo, M.P.D.: Riemannian Geometry. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  18. Colao, V., López, G., Marino, G., Martin-Marquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388(1), 61–77 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6(1), 117–136 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Cruz Neto, J.X., Melo, I.D., Sousa, P.A., Silva, J.P.: A note on the paper “A proximal point methods for quasiconvex and convex functions with bregman distances on Hadamard manifolds.” J. Convex Anal. 24(2), 679–684 (2017)

  21. Danzer, L.: Helly’s theorem and its relatives, in convexity. In Proceedings of the Symposium Pure Math. 7, 101–180 (1963)

  22. Bento, G.C., Bitar, S.D.B., Cruz Neto, J.X., Oliveira, P.R., Souza, J.C.O.: Computing Riemannian center of mass on Hadamard manifolds. J. Optim. Theory Appl. 183(3), 977–992 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  23. Loera, J.D., Goaoc, X., Meunier, F., Mustafa, N.: The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Am. Math. Soc. 56(3), 415–511 (2019)

    Article  MATH  Google Scholar 

  24. Ding, X., Tan, K.K.: A minimax inequality with applications to existence of equilibrium point and fixed point theorems. In Colloq. Math. 63, 233–247 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Eggleston, H.G.: Convexity. Cambridge University Press, Cambridge (1958)

    Book  MATH  Google Scholar 

  26. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Remannian manifolds. Optimization 51(2), 257–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ferreira, O.P., Pérez, L.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31(1), 133–151 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Granas, A., Dugundji, J.: Fixed Point Theory. Springer Science & Business Media, Berlin (2003)

  29. Grove, K.: Center of mass and G-local triviality of G-bundles. Proc. Am. Math. Soc. 54(1), 352–354 (1976)

    MATH  MathSciNet  Google Scholar 

  30. Grove, K., Karcher, H.: How to conjugatec 1-close group actions. Math. Z. 132(1), 11–20 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  31. Grove, K., Karcher, H., Ruh, E.A.: Group actions and curvature. Invent. Math. 23(1), 31–48 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  32. Grove, K., Karcher, H., Ruh, E.A.: Jacobi fields and finsler metrics on compact lie groups with an application to differentiable pinching problems. Math. Ann. 211(1), 7–21 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  33. Helly, E.: Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahresber. Dtsch. Math. 32, 175–176 (1923)

    MATH  Google Scholar 

  34. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jost, J.: Equilibrium maps between metric spaces. Calc. Var. Partial Differ. 2(2), 173–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  37. Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein beweis des fixpunktsatzes für n-dimensionale simplexe. Fundam. Math. 14(1), 132–137 (1929)

    Article  MATH  Google Scholar 

  38. Kristály, A., Moroşanu, G., Róth, A.: Optimal placement of a deposit between markets: Riemann-Finsler geometrical approach. J. Optim. Theory Appl. 139(2), 263–276 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kristály, A.: Location of Nash equilibria: a Riemannian geometrical approach. Proc. Am. Math. Soc. 138(5), 1803–1810 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kristály, A.: Nash-type equilibria on Riemannian manifolds: a variational approach. J. Math. Pures Appl. 101(5), 660–688 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kristaly, A., Li, C., López-Acedo, G., Nicolae, A.: What do “convexities” imply on Hadamard manifolds? J. Optim. Theory Appl. 170(3), 1068–1074 (2016)

  42. Lay, S. R.: Convex Sets and their Applications. Courier Corporation (2007)

  43. Ledyaev, Y.S., Treiman, J.S., Zhu, Q.J.: Helly’s intersection theorem on manifolds of nonpositive curvature. J. Convex Anal. 13(3/4), 785 (2006)

    MATH  MathSciNet  Google Scholar 

  44. Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control. Optim. 50(4), 2486–2514 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Li, P., Tam, L.F.: Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set. Ann. Math. 125(1), 171–207 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  46. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. Theory Methods Appl. 71(11), 5695–5706 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  48. Németh, S.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. Theory Methods Appl. 52(5), 1491–1498 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. Cruz Neto, J.X., Melo, I.D., Sousa, P.A.: Convexity and some geometric properties. J. Optim. Theory Appl. 173(2), 459–470 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  50. Niculescu, C.P., Rovenţa, I.: Fan’s inequality in geodesic spaces. Appl. Math. Lett. 22(10), 1529–1533 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  51. Park, S.: Riemannian manifolds are KKM spaces. Adv. Theory Nonlinear Anal. Appl. 3(2), 64–73 (2019)

    MATH  Google Scholar 

  52. Park, S.: Coupled fixed point problem in abstract convex spaces. J. Math. Sci. 12(4), 247–256 (2020)

    Google Scholar 

  53. Paternain, G. P.: Geodesic Flows, volume 180. Springer Science & Business Media (2012)

  54. Sakai, T.: Riemannian Geometry, vol. 149 of Transactions of Mathematical Monographs. American Mathematical Society, Providence, RI (1996)

  55. Shiohama, K.: Busemann functions and total curvature. Invent. Math. 53(3), 281–297 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  56. Sormani, C.: Busemann functions on manifolds with lower bounds on Ricci curvature and minimal volume growth. J. Differ. Geom. 48(3), 557–585 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  57. Sturm, K.T.: Probability measures on metric spaces of nonpositive. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces: Lecture Notes from a Quarter Program on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs: April 16-July 13, 2002, Emile Borel Centre of the Henri Poincaré Institute, Paris, France, 338–357 (2003)

  58. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds, volume 297. Springer Science & Business Media (1994)

  59. Wang, X., Li, C., Yao, J.C.: On some basic results related to affine functions on Remannian manifolds. J. Optim. Theory Appl. 170(3), 783–803 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  60. Zhou, L.W., Huang, N.J.: A revision on geodesic pseudo-convex combination and Knaster-Kuratowski-Mazurkiewicz theorem on Hadamard manifolds. J. Optim. Theory Appl. 182(3), 1186–1198 (2019)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were supported in part by FAPEPI/CNPq, CNPq grants 308330/2018-8 and 406566/2021-6, FAPEG/PRONEM- 201710267000532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaydston de Carvalho Bento.

Additional information

Communicated by Sándor Zoltán Németh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bento, G.d.C., Cruz Neto, J.X. & Melo, Í.D.L. Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems. J Optim Theory Appl 195, 1087–1105 (2022). https://doi.org/10.1007/s10957-022-02112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02112-0

Keywords

Mathematics Subject Classification