Abstract
In this paper is introduced a proposal of resolvent for equilibrium problems in terms of the Busemann’s function. A advantage of this new proposal is that, in addition to be a natural extension of its counterpart in the linear setting introduced by Combettes and Hirstoaga (J Nonlinear Convex Anal 6(1): 117–136, 2005), the new term that performs regularization is a convex function in general Hadamard manifolds, being a first step to fully answer to the problem posed by Cruz Neto et al. (J Convex Anal 24(2): 679–684, 2017 Section 5). During our study, some elements of convex analysis are explored in the context of Hadamard manifolds, which are interesting on their own. In particular, we introduce a new definition of convex combination (now commutative) of any finite collection of points and present an associated Jensen-type inequality.
Similar content being viewed by others
References
Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control. Optim. 51(3), 2230–2260 (2013)
Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imaging Vis. 58(2), 211–238 (2017)
Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. 24(3), 1542–1566 (2014)
Batista, E.E., Bento, G.C., Ferreira, O.P.: An extragradient-type algorithm for variational inequality on Hadamard manifolds. ESAIM - Control Optim. Calc. Var. 26(63), 1–16 (2020)
Batista, E.E., Bento, G.C., Ferreira, O.P.: An existence result for the generalized vector equilibrium problem on Hadamard manifolds. J. Optim. Theory Appl. 167(2), 550–557 (2015)
Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces, volume 22 of De Gruyter Series in Nonlinear Analysis and Applications De Gruyter, Berlin (2014)
Bento, G.C., Cruz Neto, J.X., Soares, P.A., Jr., Soubeyran, A.: A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires. Ann. Oper. Res. (2021). https://doi.org/10.1007/s10479-021-04052-w
Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64(2), 289–319 (2015)
Berger, M.: A Panoramic view of Riemannian Geometry. Springer Science & Business Media, Berlin (2012)
Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90(1), 31–43 (1996)
Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438(4), 1700–1710 (2013)
Blum, E.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)
Bridson, M.R., Haefliger, A.: Metric Spaces of Non-Positive Curvature, vol. 319. Springer Science & Business Media, Berlin (2013)
Busemann, H.: The Geometry of Geodesics. Press, New York (1955)
Busemann, H., Phadke, B.: Novel Results in the geometry of geodesics. Adv. Math. 101(2), 180–219 (1993)
Carathéodory, C.: Über den variabilitätsbereich der koeffizienten von potenzreihen, die gegebene werte nicht annehmen. Math. Ann. 64(1), 95–115 (1907)
Carmo, M.P.D.: Riemannian Geometry. Birkhäuser, Basel (1992)
Colao, V., López, G., Marino, G., Martin-Marquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388(1), 61–77 (2012)
Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6(1), 117–136 (2005)
Cruz Neto, J.X., Melo, I.D., Sousa, P.A., Silva, J.P.: A note on the paper “A proximal point methods for quasiconvex and convex functions with bregman distances on Hadamard manifolds.” J. Convex Anal. 24(2), 679–684 (2017)
Danzer, L.: Helly’s theorem and its relatives, in convexity. In Proceedings of the Symposium Pure Math. 7, 101–180 (1963)
Bento, G.C., Bitar, S.D.B., Cruz Neto, J.X., Oliveira, P.R., Souza, J.C.O.: Computing Riemannian center of mass on Hadamard manifolds. J. Optim. Theory Appl. 183(3), 977–992 (2019)
Loera, J.D., Goaoc, X., Meunier, F., Mustafa, N.: The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Am. Math. Soc. 56(3), 415–511 (2019)
Ding, X., Tan, K.K.: A minimax inequality with applications to existence of equilibrium point and fixed point theorems. In Colloq. Math. 63, 233–247 (1992)
Eggleston, H.G.: Convexity. Cambridge University Press, Cambridge (1958)
Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Remannian manifolds. Optimization 51(2), 257–270 (2002)
Ferreira, O.P., Pérez, L.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31(1), 133–151 (2005)
Granas, A., Dugundji, J.: Fixed Point Theory. Springer Science & Business Media, Berlin (2003)
Grove, K.: Center of mass and G-local triviality of G-bundles. Proc. Am. Math. Soc. 54(1), 352–354 (1976)
Grove, K., Karcher, H.: How to conjugatec 1-close group actions. Math. Z. 132(1), 11–20 (1973)
Grove, K., Karcher, H., Ruh, E.A.: Group actions and curvature. Invent. Math. 23(1), 31–48 (1974)
Grove, K., Karcher, H., Ruh, E.A.: Jacobi fields and finsler metrics on compact lie groups with an application to differentiable pinching problems. Math. Ann. 211(1), 7–21 (1974)
Helly, E.: Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahresber. Dtsch. Math. 32, 175–176 (1923)
Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)
Jost, J.: Equilibrium maps between metric spaces. Calc. Var. Partial Differ. 2(2), 173–204 (1994)
Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)
Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein beweis des fixpunktsatzes für n-dimensionale simplexe. Fundam. Math. 14(1), 132–137 (1929)
Kristály, A., Moroşanu, G., Róth, A.: Optimal placement of a deposit between markets: Riemann-Finsler geometrical approach. J. Optim. Theory Appl. 139(2), 263–276 (2008)
Kristály, A.: Location of Nash equilibria: a Riemannian geometrical approach. Proc. Am. Math. Soc. 138(5), 1803–1810 (2010)
Kristály, A.: Nash-type equilibria on Riemannian manifolds: a variational approach. J. Math. Pures Appl. 101(5), 660–688 (2014)
Kristaly, A., Li, C., López-Acedo, G., Nicolae, A.: What do “convexities” imply on Hadamard manifolds? J. Optim. Theory Appl. 170(3), 1068–1074 (2016)
Lay, S. R.: Convex Sets and their Applications. Courier Corporation (2007)
Ledyaev, Y.S., Treiman, J.S., Zhu, Q.J.: Helly’s intersection theorem on manifolds of nonpositive curvature. J. Convex Anal. 13(3/4), 785 (2006)
Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control. Optim. 50(4), 2486–2514 (2012)
Li, P., Tam, L.F.: Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set. Ann. Math. 125(1), 171–207 (1987)
Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. Theory Methods Appl. 71(11), 5695–5706 (2009)
Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)
Németh, S.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. Theory Methods Appl. 52(5), 1491–1498 (2003)
Cruz Neto, J.X., Melo, I.D., Sousa, P.A.: Convexity and some geometric properties. J. Optim. Theory Appl. 173(2), 459–470 (2017)
Niculescu, C.P., Rovenţa, I.: Fan’s inequality in geodesic spaces. Appl. Math. Lett. 22(10), 1529–1533 (2009)
Park, S.: Riemannian manifolds are KKM spaces. Adv. Theory Nonlinear Anal. Appl. 3(2), 64–73 (2019)
Park, S.: Coupled fixed point problem in abstract convex spaces. J. Math. Sci. 12(4), 247–256 (2020)
Paternain, G. P.: Geodesic Flows, volume 180. Springer Science & Business Media (2012)
Sakai, T.: Riemannian Geometry, vol. 149 of Transactions of Mathematical Monographs. American Mathematical Society, Providence, RI (1996)
Shiohama, K.: Busemann functions and total curvature. Invent. Math. 53(3), 281–297 (1979)
Sormani, C.: Busemann functions on manifolds with lower bounds on Ricci curvature and minimal volume growth. J. Differ. Geom. 48(3), 557–585 (1998)
Sturm, K.T.: Probability measures on metric spaces of nonpositive. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces: Lecture Notes from a Quarter Program on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs: April 16-July 13, 2002, Emile Borel Centre of the Henri Poincaré Institute, Paris, France, 338–357 (2003)
Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds, volume 297. Springer Science & Business Media (1994)
Wang, X., Li, C., Yao, J.C.: On some basic results related to affine functions on Remannian manifolds. J. Optim. Theory Appl. 170(3), 783–803 (2016)
Zhou, L.W., Huang, N.J.: A revision on geodesic pseudo-convex combination and Knaster-Kuratowski-Mazurkiewicz theorem on Hadamard manifolds. J. Optim. Theory Appl. 182(3), 1186–1198 (2019)
Acknowledgements
The authors were supported in part by FAPEPI/CNPq, CNPq grants 308330/2018-8 and 406566/2021-6, FAPEG/PRONEM- 201710267000532.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Sándor Zoltán Németh.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bento, G.d.C., Cruz Neto, J.X. & Melo, Í.D.L. Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems. J Optim Theory Appl 195, 1087–1105 (2022). https://doi.org/10.1007/s10957-022-02112-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-022-02112-0