Abstract
To improve the financing performance, optimization models have been developed to analyze the operation mechanism of crowdfunding. However, network externality, which has proven to exist in crowdfunding, was ignored in previous studies. In order to address this gap, we construct an optimization model incorporating network externality and investigate its impact on crowdfunding operation decisions. Our analysis reveals that network externality does not monotonously influence optimal prices, while it always improves the project quality. In addition, we prove that although network externality increases the creator’s profit, it increases the price discrimination level and may hurt consumers, thus reducing social welfare. In extensions, we investigate the effects of demand uncertainty, external financing, and word-of-mouth effect on the optimal decisions. Our work not only provides managerial implications for crowdfunding activities, but also reveals the potential negative effects of network externality for platforms.






Similar content being viewed by others
References
Agrawal, A., Catalini, C., Goldfarb, A.: The geography of crowdfunding. National Bureau of Economic Research NBER No. w16820, University of Toronto (2011)
Ahlers, G.K.C., Cumming, D., Günther, C., Schweizer, D.: Signaling in equity crowdfunding. Entrep. Theory Pract. 39(4), 955–980 (2015)
Bapna, S., Ganco, M.: Gender gaps in equity crowdfunding: evidence from a randomized field experiment. Manag. Sci. 67(5), 2679–2710 (2021)
Belleflamme, P., Lambert, T., Schwienbacher, A.: Crowdfunding: tapping the right crowd. J. Bus. Venturing 29(5), 585–609 (2021)
Bensaid, B., Lesne, J.P.: Dynamic monopoly pricing with network externality. Int. J. Ind. Organ. 14(6), 837–855 (1996)
Bi, G.B., Geng, B.T., Liu, L.D.: On the fixed and flexible funding mechanisms in reward-based crowdfunding. Eur. J. Oper. Res. 279(1), 168–183 (2019)
Blaseg, D., Schulze, C., Skiera, B.: Consumer protection on Kickstarter. Market. Sci. 39(1), 211–233 (2020)
Cabral, L.M.B., Salant, D.J., Woroch, G.A.: Monopoly pricing with network externality. Int. J. Ind. Organ. 17(2), 199–214 (1999)
Chemla, G., Tinn, K.: Learning through crowdfunding. Manag. Sci. 66(5), 1783–1801 (2020)
Chen, C., Duan, Y.: Online cash-back shopping with network externalities. INFOR 59(1), 26–52 (2021)
Church, J., Gandal, N.: Complementary network externalities and technological adoption. Int. J. Ind. Organ. 11(2), 239–260 (1993)
Farrell, J., Saloner, G.: Installed base and compatibility: innovation, product preannouncements, and predation. Am. Econ. Rev. 940–955 (1986)
Hahn, J.H.: Nonlinear pricing of telecommunications with call and network externality. Int. J. Ind. Organ. 21(7), 949–967 (2003)
Halaburda, H., Jullien, B., Yehezkel, Y.: Dynamic competition with network externalities: how history matters. RAND J. Econ. 51(1), 3–31 (2020)
Hu, M., Li, X., Shi, M.Z.: Product and pricing decisions in crowdfunding. Market. Sci. 34(3), 331–345 (2015)
Jing, B.: Network externality and market segmentation in a monopoly. Econ. Lett. 95(1), 7–13 (2007)
Katz, M.L., Shapiro, C.: Network externalities, competition, and compatibility. Am. Econ. Rev. 75(3), 424–440 (1985)
Kumar, P., Langberg, N., Zvilichovsky, D.: Crowdfunding, financing constraints, and real effects. Manag. Sci. 66(8), 3561–3580 (2020)
Li, Z., Duan, J.A., Ransbotham, S.: Coordination and dynamic promotion strategies in crowdfunding with network externality. Prod. Oper. Manag. 29(4), 1032–1049 (2020)
Li, J., Hu, F., Yan, T., Song, X.: How to charge doctors and price medicines in a two-sided online healthcare platform with network externalities? Int. J. Prod. Res. (2022). https://doi.org/10.1080/00207543.2022.2077151
Mollick, E.: The dynamics of crowdfunding: an exploratory study. J. Bus. Venturing 29(1), 1–16 (2014)
Rohlfs, J.: A theory of interdependent demand for a communications service. Bell J. Econ. Manag. Sci. 16–37 (1974)
Tian, Y., Zhang, Y.: Pricing of crowdfunding products with strategic consumers and online reviews. Electron. Commer. Res. Appl. (2022). https://doi.org/10.1016/j.elerap.2022.101169
Vismara, S.: Equity retention and social network theory in equity crowdfunding. Small Bus. Econ. 46(4), 579–590 (2016)
Wang, H., He, Y., Ding, Q.: The impact of network externalities and altruistic preferences on carbon emission reduction of low carbon supply chain. Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-20459-9
Xu, Y., Song, W., Bi, G.B.: The roles of crowdfunding: financing, point provision and ex-post production. Int. J. Prod. Res. 59(23), 7037–7056 (2021)
Xu, Y., Song, W., Bi, G.B., Zhou, Q.: Threshold effect in crowdfunding: evidence from investment-level data. Int. J. Electron. Comm. 25(4), 416–439 (2021)
Younkin, P., Kuppuswamy, V.: The colorblind crowd? Founder race and performance in crowdfunding. Manag. Sci. 64(7), 3269–3287 (2018)
Zhang, Z.H., Ling, L.Y., Yang, F.: Pricing strategy and campaign design in flight crowdfunding: a creative way to sell flight tickets. Nav. Res. Log. 68(6), 795–809 (2021)
Zhao, C., Zhang, Y., Liu, B.: Sales effort investment and the success of online product crowdfunding. IEEE Access 7, 48151–48166 (2019)
Zhou, Y., Zhang, J., Zeng, Y.: Borrowing or crowdfunding: a comparison of poverty alleviation participation modes considering altruistic preferences. Int. J. Prod. Res. 59(21), 6564–6578 (2021)
Acknowledgements
The authors are supported by National Natural Science Foundation of China [Grant Numbers: 72201001, 72101003, 71801203].
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Juan-Enrique Martinez Legaz.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Proof of Lemma (3.1)
-
(1)
When \(p_{\textrm{c}} \le \lambda q\), then \(\Pi \) increases with \(p_{\textrm{c}} \). So the optimal price is \(p_{\textrm{c}} =\lambda q\) and \(\Pi =\lambda q-I\).
-
(2)
When \(q\ge p_{\textrm{c}} >\lambda q\), for a given price \( p_{\textrm{c}} \), by solving FOCs, we can get \(p_{\textrm{r}} (p_{\textrm{c}} )=\frac{p_{\textrm{c}} -\lambda q}{2(1-\lambda )} \). Substituting \(p_{\textrm{r}} (p_{\textrm{c}} )=\frac{p_{c} -\lambda q}{2(1-\lambda )} \) into \(\Pi \), we have
$$\begin{aligned} \Pi (p_{\textrm{r}} (p_{\textrm{c}} ))=\frac{-(3-4\lambda )p_{\textrm{c}}^{2} +(4-6\lambda )qp_{\textrm{c}} +\lambda ^{2} q^{2} }{{ 4(1-}\lambda { )}^{2} { q}}. \end{aligned}$$(A. 1)If \(\lambda >\frac{{ 1}}{{ 2}} \), then \(\frac{\partial \Pi (p_{\textrm{r}} (p_{\textrm{c}} ))}{\partial p_{\textrm{c}} } \le 0\), thus the creator will set \(p_{\textrm{c}} =\lambda q\), then \(\Pi =\lambda q-I\). In this case, no consumers will purchase in the crowdfunding stage. If \( \lambda \le \frac{{ 1}}{{ 2}} \), solving FOCs, we can get \(p_{\textrm{c}} =\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\), then \(p_{\textrm{r}} =\frac{1-2\lambda }{3-4\lambda } q\). Substituting \(p_{\textrm{c}} =\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\) and \(p_{\textrm{r}} =\frac{1-2\lambda }{3-4\lambda } q\) into \(\Pi \), we can get \( \Pi =\frac{1-\lambda }{3-4\lambda } q-I\).
-
(3)
When \(p_{\textrm{c}} >q\), solving FOCs, then we can get \(p_{\textrm{r}} =\frac{q}{2} \). Substituting \(p_{\textrm{r}} =\frac{q}{2} \) in \(\Pi \), we can get \(\Pi =\frac{q}{4} -I\). Through comparisons among the above three cases, we have Lemma (3.1). \(\square \)
Proof of Proposition (3.2)
From Lemma (3.1), we have: if \(\lambda \le \frac{{ 1}}{{ 2}} \), then \(\frac{\partial p_{\textrm{c}}^{*} }{\partial \lambda } =-\frac{q}{(3-4\lambda )^{2} }<0,{ \; }\frac{\partial p_{\textrm{r}}^{*} }{\partial \lambda } =\frac{-2q}{(3-4\lambda )^{2} } <0\), and \(\frac{\partial \Pi ^{*} }{\partial \lambda } =\frac{q}{(3-4\lambda )^{2} } >0\); if \(\lambda >\frac{{ 1}}{{ 2}} \), then \(\frac{\partial p_{\textrm{c}}^* }{\partial \lambda } =\lambda >0\) and \(\frac{\partial \Pi ^{*} }{\partial \lambda } =q>0\). \(\square \)
Proof of Proposition (3.4)
Taking the derivative of both sides of the Eq. (8) with respect to \(\lambda \), we can obtain
and
Using \(\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\ge \bar{p}_{\textrm{c}} \ge \frac{{ 1}}{{ 2}} q\), we have
and
Because inequality (A. 5) holds, we can obtain \(\Pi ^{*} =\frac{(\bar{p}_{\textrm{c}} -\lambda q)^{2} }{4q(1-\lambda )^{2} } -B\) increases with \(\lambda \).
By transforming equation (8), we have
Taking the derivative of both sides of the Eq. (A. 6) with respect to q, we can obtain
Thus we have \(\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} =\frac{\bar{p}_{\textrm{c}}^{2} }{q(2\bar{p}_{\textrm{c}} -q)} >0\). By transforming equation (8), we can get \((q-\bar{p}_{\textrm{c}} )\frac{\bar{p}_{c} }{q} =(I-B)(1-\lambda )\). Because \( \frac{\partial (q-\bar{p}_{\textrm{c}} )}{\partial q} =1-\frac{\bar{p}_{\textrm{c}}^{2} }{q(2\bar{p}_{\textrm{c}} -q)} =\frac{\bar{p}_{\textrm{c}}^{2} -q^{2} }{q(2\bar{p}_{\textrm{c}} -q)} <0\), we have \(\frac{\bar{p}_{\textrm{c}} }{q} \) increases with q. Therefore, \(\Pi ^{*} =\frac{(\frac{\bar{p}_{\textrm{c}} }{q} -\lambda )^{2} q}{4(1-\lambda )^{2} } -B\) increases with q.
Taking the derivative of both sides of the Eq. (8) with respect to \(B-I\), we can get
By arranging Eq. (A. 8), we can get
Because \(\Pi ^{*} \) increases with \(\bar{p}_{c} \), and \( \bar{p}_{\textrm{c}} \) decreases with I, we have \(\Pi ^{*} \) decreases with I. Furthermore,
\(\square \)
Proof of Proposition (3.5)
When \(\lambda \ge \frac{1}{2} \), it is obvious that CS is not affected by \(\lambda \), B, and I, while increases with q; when \(\lambda <\frac{1}{2} \cup B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q\ge I\), we can easily get that CS increases with \(\lambda \) and q, while is not influenced by B and I; when \(\lambda<\frac{1}{2} \cup B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q<I\), \(CS=\frac{{ 5}\bar{p}_{\textrm{c}}^{2} -2\bar{p}_{\textrm{c}} q(4+\lambda )+(4+\lambda ^{2} )q^{2} }{8(1-\lambda )^{2} q} \). The symmetry axis of \({ 5}\bar{\textrm{p}}_{\textrm{c}}^{2} -2\bar{p}_{\textrm{c}} q(4+\lambda )+(4+\lambda ^{2} )q^{2} \) with respect to \(\bar{p}_{\textrm{c}} \) is \( \frac{4+\lambda }{5} q\) and \(\frac{4+\lambda }{5} q>\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\ge \bar{p}_{c} \ge \frac{{ 1}}{{ 2}} q\). Therefore, CS decreases with \(\bar{p}_{\textrm{c}} \). Further, because \(\bar{p}_{\textrm{c}} \) increases (decreases) with B (I), we have CS decreases (increases) with B (I). Next, we prove \(\frac{\partial CS}{\partial q} <0\) and \(\frac{\partial CS}{\partial \lambda } <0\).
When \(\bar{p}_{\textrm{c}} \in (\frac{{ 1}}{{ 2}} q,\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q)\), we have \( (3+2\lambda )\bar{p}_{\textrm{c}}^{2} -2(4+\lambda ^{2} )q\bar{p}_{\textrm{c}} +(4+\lambda ^{2} )q^{2} >0\) and \(5\bar{p}_{\textrm{c}} -(4+\lambda )q<0\) always hold. Therefore, \( \frac{\partial CS}{\partial q} <0\), \(\frac{\partial CS}{\partial \lambda } <0\). \(\square \)
Proof of Proposition (3.6)
When \(\lambda \ge \frac{1}{2} \) or \(\lambda <\frac{1}{2} \cup B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q\ge I\), it is obvious that SW increases with \(\lambda \) and q, decreases with I, while is not affected by B. When \(\lambda<\frac{1}{2} \cup B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q<I\), we have
We now prove whether \(\frac{\partial SW}{\partial q}\) is positive or negative. \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{q}{2} }} \frac{\partial SW}{\partial q}={\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{q}{2} }} -\frac{\bar{p}_\textrm{c}^{2} (1+6\lambda )-2\bar{p}_\textrm{cq}(4+3\lambda ^{2} )+(4+3\lambda ^{2} )q^{2} }{(2\bar{p}_\mathrm{c-q})q}=-\infty <0\), \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial q} ={\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} -\frac{\bar{p}_\textrm{c}^{2} (1+6\lambda )-2\bar{p}_\textrm{cq}(4+3\lambda ^{2} )+(4+3\lambda ^{2} )q^{2} }{(2\bar{p}_\mathrm{c-q})q}=\frac{4(1-\lambda )^{2} (2-9\lambda +6\lambda ^{2} )}{3-2\lambda (5-4\lambda )} \). If \(\lambda <\frac{1}{12} (9-\sqrt{33} )\), we have \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial q} >0\), therefore, \(\frac{\partial SW}{\partial q} >0\) holds in this case. If \(\frac{1}{12} (9-\sqrt{33} )<\lambda <\frac{1}{2} \), \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial q} <0\). We can further get when \( \bar{p}_\textrm{c}>\frac{(4+3\lambda ^2)q-(1+5\lambda -6\lambda ^2)(I-B)}{6 \lambda ^2-6 \lambda +7}\) (\( \bar{p}_\textrm{c}<\frac{(4+3\lambda ^2)q-(1+5\lambda -6\lambda ^2)(I-B)}{6 \lambda ^2-6 \lambda +7}\)), \(\frac{\partial SW}{\partial q} >0(\frac{\partial SW}{\partial q} <0)\). Substituting \( \bar{p}_\textrm{c}=\frac{(4+3\lambda ^2)q-(1+5\lambda -6\lambda ^2)(I-B)}{6 \lambda ^2-6 \lambda +7}\) into \((1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\bar{p}_{\textrm{c}} +B-I\), we have \( (1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\bar{p}_{\textrm{c}} +B-I=\frac{-(1-\lambda ) \left( (1+6 \lambda )^2(I-B)^2+12 (I-B) (1-\lambda ) \left( 3 \lambda ^2+4\right) q-3 \left( 3 \lambda ^2+4\right) q^2\right) }{(7-6 (1-\lambda ) \lambda )^2 q}\). We can easily verify that \(\frac{-(1-\lambda ) \left( (1+6 \lambda )^2(I-B)^2+12 (I-B) (1-\lambda ) \left( 3 \lambda ^2+4\right) q-3 \left( 3 \lambda ^2+4\right) q^2\right) }{(7-6 (1-\lambda ) \lambda )^2 q}>0\) only when \(q>\hat{q}=\frac{\sqrt{(I-B)^2 (7-6 (1-\lambda ) \lambda )^2 \left( 3 \lambda ^2+4\right) }}{\sqrt{3} \left( 3 \lambda ^2+4\right) }+2 (I-B) (1-\lambda )\). Therefore, in this case, if \(q>\hat{q}\), we have \(\frac{\partial SW}{\partial q} >0\); otherwise, we have \(\frac{\partial SW}{\partial q} <0\).
Taking the derivative of SW with respect to \(\lambda \), we have
We can obtain \({\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{q}{2} }} \frac{\partial SW}{\partial \lambda } <0\) and \( {\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial \lambda } { =}\frac{4(1-\lambda )^{2} (2-9\lambda +6\lambda ^{2} )}{3-2\lambda (5-4\lambda )} \). If \(\lambda <\frac{{ 1}}{{ 6}} \), \( {\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial \lambda } >0\); if \(\frac{{ 1}}{{ 6}}<\lambda <\frac{1}{2} \), \( {\mathop {\lim }\limits _{\bar{p}_{\textrm{c}} \rightarrow \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q}} \frac{\partial SW}{\partial \lambda } <0\). Therefore, \(\frac{\partial SW}{\partial \lambda } >0\) holds when and only when \(\lambda <\frac{1}{6} \) and \(\bar{p}_{\textrm{c}} >\frac{(4+3\lambda )q}{{ 7}} \); otherwise, \(\frac{\partial SW}{\partial \lambda } <0\). Substituting \(\bar{p}_{\textrm{c}} =\frac{(4+3\lambda )q}{{ 7}} \) in \((1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\bar{p}_{\textrm{c}} +B-I\), we can get \( (1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} )\bar{p}_{\textrm{c}} +B-I>0\) when and only when \(\lambda >\frac{49 (I-B)}{9 q}-\frac{4}{3}\). Then when \(\lambda >\frac{49 (I-B)}{9 q}-\frac{4}{3} (\lambda <\frac{49 (I-B)}{9 q}-\frac{4}{3})\), we have \( \bar{p}_{\textrm{c}} >\frac{(4+3\lambda )q}{{ 7}}(\bar{p}_{\textrm{c}} <\frac{(4+3\lambda )q}{{ 7}}) \).
We now prove \(\frac{\partial SW}{\partial B} <0\). Because \( SW=\frac{(4+3\lambda ^{2} )q^{2} -(1-8\lambda )\bar{p}_{\textrm{c}}^{2} -14\lambda \bar{p}_{\textrm{c}} q}{8(1-\lambda )^{2} q} -I\) decreases with \(\bar{p}_{\textrm{c}} \in (\frac{{ 1}}{{ 2}} q,\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q)\) and \(\frac{\partial \bar{p}_{\textrm{c}} }{\partial B} >0\), we have \(\frac{\partial SW}{\partial B} <0\).
We next prove the results about how SW is affected by I.
If \(\lambda \ge \frac{1}{6} \), we have \(\frac{(4+3)\lambda }{{ 7}} q\ge \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\), thus \(\frac{\partial SW}{\partial I} >0\) holds when \(\bar{p}_{\textrm{c}} \in (\frac{{ 1}}{{ 2}} q,\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q)\); if \(\lambda <\frac{1}{6} \), we have \(\frac{q}{2}<\frac{(4+3)\lambda }{{ 7}} q<\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q\), thus \(\frac{\partial SW}{\partial I} >0\) when \( \bar{p}_{\textrm{c}} \in (\frac{{ 1}}{{ 2}} q,\frac{(4+3)\lambda }{{ 7}} q)\) while \(\frac{\partial SW}{\partial I} <0\) when \(\bar{p}_{\textrm{c}} \in (\frac{(4+3)\lambda }{{ 7}} q, \frac{2-3\lambda }{{ 3}-{ 4}\lambda } q)\). Similarly, when \(I<B+\frac{3}{49} (3 \lambda +4) q\) \((I>B+\frac{3}{49} (3 \lambda +4) q)\), we can get \( \bar{p}_{\textrm{c}} >\frac{(4+3\lambda )q}{{ 7}}\) \((\bar{p}_{\textrm{c}} <\frac{(4+3\lambda )q}{{ 7}}) \). \(\square \)
Proof of Theorem (3.7)
-
(1)
If \(\lambda >\frac{1}{2} \), \(\Pi =\lambda q-aq^{2} -I^{{ 0}} \). By solving \(\frac{\partial \Pi }{\partial q} =0\), we get \(q^{*} =\frac{\lambda }{2a} \). Substituting \(q^{*} =\frac{\lambda }{2a} \) into \(\Pi =\lambda q-aq^{2} -I^{{ 0}} \), we have \(\Pi ^{*} =\frac{\lambda ^{2} }{4a} -I^{{ 0}} \).
-
(2)
If \(\lambda \le \frac{1}{2} \), (a) when \( B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q\ge I=aq^{2} +I^{{ 0}} \) (i.e. \(q\le \bar{q}_{{ 1}} \), where \(\bar{q}_{{ \textrm{1}}} \) is the positive root of \(B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q=aq^{2} +I^{{ 0}} \)), \(\Pi =\frac{1-\lambda }{3-4\lambda } q-aq^{2} -I^{{ 0}} \). By solving \(\frac{\partial \Pi }{\partial q} =0\), we get \(q=\frac{\frac{1-\lambda }{3-4\lambda } }{2a} \). Therefore, the optimal quality is \(q=\min \{ \frac{\frac{1-\lambda }{3-4\lambda } }{2a},\bar{q}_{{ 1}} \} \). Furthermore, when \(B\ge \frac{(5-4\lambda )\lambda ^{2} -1}{4(3-4\lambda )^{3} } +I^{0} \) (\(B<\frac{(5-4\lambda )\lambda ^{2} -1}{4(3-4\lambda )^{3} } +I^{{ 0}} \)), we have \( \frac{\frac{1-\lambda }{3-4\lambda } }{2a} \le \bar{q}_{{\textrm{1}}} \)(\( \frac{\frac{1-\lambda }{3-4\lambda } }{2a} >\bar{q}_{{\textrm{1}}} \)).
-
(b)
When \(B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q\le I=aq^{2} +I^{0} \le B+\frac{1}{4(1-\lambda )^{2} } q\), i.e., \(\bar{q}_{2} \ge q\ge \bar{q}_{{ 1}} \), we have \(\Pi =\frac{(\bar{p}_{\textrm{c}} -\lambda q)^{2} }{4q(1-\lambda )^{2} } -B\). Taking the derivative of both sides of Eq. (8) with respect to q, we can get
$$\begin{aligned} \left( \frac{\bar{p}_{\textrm{c}} }{(1-\lambda )q^{2} } -\frac{1}{(1-\lambda )q} \frac{\partial \bar{p}_{\textrm{c}} }{\partial q} \right) \bar{p}_{\textrm{c}} +\left( 1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} \right) \frac{\partial \bar{p}_{\textrm{c}} }{\partial q} =2aq.\qquad \end{aligned}$$(A. 16)Then \(\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} =\frac{2aq-\frac{\bar{p}_{\textrm{c}}^{2} }{(1-\lambda )q^{2} } }{1-\frac{\bar{p}_{\textrm{c}} -\lambda q}{(1-\lambda )q} -\frac{\bar{p}_{\textrm{c}} }{(1-\lambda )q} } =\frac{2aq(1-\lambda )q^{2} -\bar{p}_{\textrm{c}}^{2} }{q(q-2\bar{p}_{\textrm{c}} )} \). Taking the derivative of \(\Pi \) with respect to q, we have
$$\begin{aligned} \frac{\partial \Pi }{\partial q} =\frac{2(\bar{p}_{\textrm{c}} -\lambda q)(\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} -\lambda )\times 4q(1-\lambda )^{2} -4(1-\lambda )^{2} (\bar{p}_{\textrm{c}} -\lambda q)^{2} }{16q^{2} (1-\lambda )^{4} }.\qquad \end{aligned}$$(A. 17)Substituting \(\frac{\partial \bar{p}_{\textrm{c}} }{\partial q} \) in (A. 17), together with (8), we have
$$\begin{aligned} \frac{\partial \Pi }{\partial q} =0\Leftrightarrow f(q)= & {} -16a^{{ 2}} (1-\lambda )q^{{ 3}} +(3a+4a(1-\lambda )\lambda )q^{2} -\lambda q\nonumber \\{} & {} \quad +(B-I^{{ 0}} )(1-2\lambda )^{2} =0, \end{aligned}$$(A. 18)then \( f'(q)=-{ 48}a^{{ 2}} (1-\lambda )q^{{ 2}} +{ 2}(3a+4a(1-\lambda )\lambda )q-\lambda \). Because \(\frac{\lambda }{6a} \) and \( \frac{{ 1}}{{ 8}a(1-\lambda )} \) are two positive roots of \( f'(q)=0\) and \(f'(q)|_{q=0} =-\lambda <0\), we get f(q) decreases in \((0,\frac{\lambda }{6a} )\), increases in \( (\frac{\lambda }{6a},\frac{{ 1}}{{ 8}a(1-\lambda )} )\), and decreases in \((\frac{{ 1}}{{ 8}a(1-\lambda )},+\infty )\). Due to \(f(0)=(B-I^{{ 0}} )(1-2\lambda )^{2} <0\) and \(f(\frac{{ 1}}{{ 8}a(1-\lambda )} )=\frac{(1+64a(B-I^{0} )(1-\lambda )^{2} )(1-2\lambda )^{2} }{64a(1-\lambda )^{2} } >0\), we can get that \( \bar{q}_{{ 3}} \) and \(\bar{q}_{{ 4}} \) (\(\bar{q}_{{ 4}} >\frac{{ 1}}{{ 8}a(1-\lambda )} \) ) are two positives roots of \( f(q)=0\). Therefore, \(\Pi \) decreases in \((0,\bar{q}_{{ 3}} )\), increases in \((\bar{q}_{{ 3}},\bar{q}_{{ 4}} )\), and decreases in \((\bar{q}_{{ 4}},+\infty )\). Then we have the maximized \(\Pi \) achieves at \(q=\bar{q}_{{ 4}} \).
Based on (1) and (2), we obtain Theorem (3.7). \(\square \)
Proof of Proposition (3.8)
When \(\lambda >\frac{1}{2} \), \(q^{*} =\frac{\lambda }{2a} \). It is obvious that \(q^{*} \) increases with \(\lambda \), decreases with a, and is not affected by B and \( I^{{ 0}} \). When \(\lambda \le \frac{1}{2} \), if \(B-I^{{ 0}} \ge \frac{n^{2} }{4a} -\frac{mn}{2a} \), \(q^{*} =\frac{n}{2a} \). Then we have \(\frac{\partial q^{*} }{\partial a} =-\frac{n}{2a^{2} } <0\), \(\frac{\partial q^{*} }{\partial \lambda } { =}\frac{1}{2(3-4\lambda )^{2} a} >0\), and \(q^{*} \) is not affected by B and \(I^{{ 0}} \). When \(\lambda \le \frac{1}{2} \) and \(B-I^{0} <\frac{n^{2} }{4a} -\frac{mn}{2a} \), taking the derivative of both sides of Eq. (A. 18) with respect to a, we get
Because \(q^{*} >\frac{{ 1}}{{ 8}a(1-\lambda )} \), we have \(-{ 48}a^{{ 2}} (1-\lambda )(q^*)^{{ 2}} +{ 2}(3a+4a(1-\lambda )\lambda )q^*-\lambda <0\) and \(-32a(1-\lambda )(q^{{ *}} )^{{ 3}} +(3+4(1-\lambda )\lambda )(q^{*} )^{2} <0\). Therefore,
Taking the derivative of both sides of Eq. (A. 18) with respect to \(\lambda \), we get
Then we have \(\frac{\partial q^{{ *}} }{\partial \lambda } =-\frac{16a^{{ 2}} (q^{{ *}} )^{{ 3}} +4a(1-2\lambda )(q^{*} )^{2} -q^{*} -4(1-2\lambda )(B-I^{0} )}{-48a^{{ 2}} (1-\lambda )(q^{{ *}} )^{2} +2(3a+4a(1-\lambda )\lambda )q^{*} -\lambda }\). By solving Eq. (A. 18), we can obtain
Substituting \(B-I^{{ 0}} { =}\frac{16a^{{ 2}} (1-\lambda )(q^{{ *}} )^{{ 3}} -(3a+4a(1-\lambda )\lambda )(q^{{ *}} )^{2} +\lambda (q^{{ *}} )}{(1-2\lambda )} \) into \(\frac{\partial q^{{ *}} }{\partial \lambda } \), we can get
Because \(\frac{\frac{1-\lambda }{3-4\lambda } }{2a}>q^{{ *}} >\frac{{ 1}}{{ 8}a(1-\lambda )} \), we have \(q^{{ *}} (4aq^{{ *}} -1)(1+2\lambda -4aq^{{ *}} (3-2\lambda ))>0\), then \( \frac{\partial q^{{ *}} }{\partial \lambda } >0\).
Finally, taking the derivative of both sides of equation (A. 18) with respect to \(B-I^0\), we have
Then \(\frac{\partial q^{{ *}} }{\partial B-I} { =}\frac{-(1-2\lambda )^{2} }{-48a^{{ 2}} (1-\lambda )(q^{{ *}} )^{2} +2(3a+4a(1-\lambda )\lambda )q^{*} -\lambda } >0\) holds. \(\square \)
Proof of Theorem (4.1)
When \(\lambda >\frac{{ 1}}{{ 2}} \), the optimal decision under both strategies is \(p_{\textrm{c}} =\lambda q\), therefore \(p_{\textrm{c}}^{*} =\lambda q\). When \(\lambda \le \frac{{ 1}}{{ 2}} \cap \min \{ B+u_{l} \frac{2-3\lambda }{(3-4\lambda )^{2} } q,u_{\textrm{l}} \frac{1-\lambda }{3-4\lambda } q\} \ge I\), because the extreme point of \(\Pi _{\textrm{h}} \) is within the feasible area and \(\Pi _{\textrm{l}} \le \Pi _{\textrm{h}} \), HP is the optimal strategy.
When \(\lambda \le \frac{{ 1}}{{ 2}} \) and \(B+u_{\textrm{l}} \frac{2-3\lambda }{(3-4\lambda )^{2} } q<I\), because \(\Pi _{\textrm{h}}^{*} \) and \(\Pi _{\textrm{l}}^{*} \) are the linear functions of \( \beta \), we have \(\mathrm \Delta \Pi =\Pi _{\textrm{h}}^{*} -\Pi _{\textrm{l}}^{*} \) is also the linear function of \(\beta \). Because \(\Delta \Pi { |}_{\beta =0} =\Pi _{h}^{*} \ge 0\), we also have \(\Pi _{h} =\Pi _{\textrm{l}} \) when \(\beta =1\) and the following formula holds:
Then we can obtain \(\Delta \Pi { |}_{\beta ={ 1}} =\Pi _{\textrm{h}}^{*} -\Pi _{l}^{*} \le 0\). Therefore, there exists a threshold \( \bar{\beta }\) such that \(\Pi _{\textrm{h}}^{*} \ge \Pi _{\textrm{l}}^{*} \) when \(\beta \le \bar{\beta }\) and \(\Pi _{\textrm{h}}^{*} <\Pi _{\textrm{l}}^{*} \) when \(\beta >\bar{\beta }\). \(\square \)
Proof of Theorem (4.2)
First, when \(\lambda >\frac{{ 1}}{{ 2}} \) and \(I\le \lambda q\), the creator will not need loans, so the optimal price is \( p_{\textrm{c}}^{*} =\lambda q\).
Second, when \(\lambda \le \frac{{ 1}}{{ 2}} \) and \(\min \{ B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q,\frac{1-\lambda }{3-4\lambda } q\} \ge I\), because the sum of raised funds in crowdfunding stage and initial funds is enough to cover the cost, the creator will not need loans so the optimal price in this case is the same as that in the case without capital-constraint, i.e., \( p_{\textrm{c}}^{*} =\frac{2-3\lambda }{{ 3}-{ 4}\lambda } q,{ \; }p_{\textrm{r}}^{*} =\frac{1-2\lambda }{3-4\lambda } q\).
Third, when \( \lambda \le \frac{{ 1}}{{ 2}} \) and \( B+\frac{2-3\lambda }{(3-4\lambda )^{2} } q<I\), the profit is
By transforming inequality (22), we obtain \(A\ge I-B-(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} \). If \(I-B-(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} \le { 0}\), \(A=0\) is the optimal loan amounts, i.e., the creator will not need loans. Then the optimal prices are \(p_{\textrm{c}} =\bar{p}_{\textrm{c}} \), \(p_{\textrm{r}} =\frac{\bar{p}_{\textrm{c}} -\lambda q}{2(1-\lambda )} \), and \(\Pi =\frac{(\bar{p}_{\textrm{c}} -\lambda q)^{2} }{4q(1-\lambda )^{2} } -B\); if \(I-B-(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} >0\), because \(\Pi \) decreases with r, the optimal loan amounts is \(A=I-B-(1-\frac{p_{\textrm{c}} -\lambda q}{(1-\lambda )q} )p_{\textrm{c}} \) and
By solving \(\frac{\partial \Pi }{\partial p_{\textrm{c}} } =0\) and \( \frac{\partial \Pi }{\partial p_{\textrm{r}} } =0\), we can get \(p_{\textrm{c}} =\frac{q(2+2r(1-\lambda )-3\lambda )}{3+4r(1-\lambda )-4\lambda } \) and \(p_{\textrm{r}} =\frac{q(1+r)(1-2\lambda )}{3+4r(1-\lambda )-4\lambda } \). Substituting \(p_{\textrm{c}} =\frac{q(2+2r(1-\lambda )-3\lambda )}{3+4r(1-\lambda )-4\lambda } \) and \(p_{\textrm{r}} =\frac{q(1+r)(1-2\lambda )}{3+4r(1-\lambda )-4\lambda } \) into \( \Pi \), we have
Because \(\Pi =(1+\frac{(1+2r)^{2} }{3+4r(1-\lambda )-4\lambda } )q-I(1+r)+rB\) decreases with r, we have \({\mathop {\lim }\limits _{r\rightarrow 0}} (1+\frac{(1+2r)^{2} }{3+4r(1-\lambda )-4\lambda } )q-I(1+r)+rB=\frac{1-\lambda }{3-4\lambda } q-I>\frac{(\bar{p}_{\textrm{c}} -\lambda q)^{2} }{4q(1-\lambda )^{2} } -B\) and \({\mathop {\lim }\limits _{r-\rightarrow \infty }} (1+\frac{(1+2r)^{2} }{3+4r(1-\lambda )-4\lambda } )q-I(1+r)+rB<0\). Therefore, there exists a \( \bar{r}\) such that when \(r\ge \bar{r}\), the creator will not borrow loans and set \(p_{\textrm{c}}^{*} =\bar{p}_{\textrm{c}} \) and \( p_{\textrm{r}}^{*} =\frac{\bar{p}_{\textrm{c}} -\lambda q}{2(1-\lambda )} \); when \( r<\bar{r}\), the creator will borrow loans and set \(p_{\textrm{c}}^{*} =\frac{q(2+2r(1-\lambda )-3\lambda )}{3+4r(1-\lambda )-4\lambda } \), \(p_{\textrm{r}}^{*} =\frac{q(1+r)(1-2\lambda )}{3+4r(1-\lambda )-4\lambda } \). \(\square \)
Proof of Theorem (4.3)
When \(\lambda >\frac{{ 1}}{{ 2}} (1+e)\), setting \(p_{\textrm{c}} =\lambda q\) under HS strategy is better than setting \(p_{\textrm{c}} { =} ((1-\lambda )\frac{e}{1+e} +\lambda )q\) under LS strategy; therefore, \(p_{\textrm{c}}^{*} =\lambda q\). When \(\frac{{ 1}}{{ 2}} (1+e)\ge \lambda >\frac{{ 1}}{{ 2}} (1-e^{2} )\), setting \(p_{\textrm{c}} { =}\frac{(1+e-(1-e)\lambda )q}{2(1+e-\lambda )} \) under HS strategy is better than that setting \(p_{\textrm{c}} { =}((1-\lambda )\frac{e}{1+e} +\lambda )q\) under LS strategy; therefore, we have \(p_{\textrm{c}}^{*} { =}\frac{(1+e-(1-e)\lambda )q}{2(1+e-\lambda )} \) and \(p_{\textrm{r}}^{*} =e(1-\bar{\theta })q=\frac{e(1+e)q}{2(1+e-\lambda )} \); when \(\lambda \le \frac{{ 1}}{{ 2}} (1-e^{2} )\), setting \(p_{\textrm{c}} =\frac{(-2+e^{2} +3\lambda -e(1+\lambda ))}{-3+4\lambda -(2-e)e} q\) under LS strategy is better than setting \(p_{\textrm{c}} =((1-\lambda )\frac{e}{1+e} +\lambda )q\) under HS strategy; therefore, we have \(p_{\textrm{c}}^{*} { =}\frac{(1+e-(1-e)\lambda )q}{2(1+e-\lambda )} \) and \(p_{\textrm{r}}^{*} =\frac{\bar{\theta }+e(1-\bar{\theta })}{2} q=\frac{{ 1}+e-2\lambda }{3+(2-e)e-4\lambda } q\). \(\square \)
Proof of Proposition (4.4)
When \(\lambda >\frac{{ 1}}{{ 2}} (1+e)\), \(p_{\textrm{c}}^{*} \) is not influenced by e; when \(\frac{{ 1}}{{ 2}} (1+e)\ge \lambda >\frac{{ 1}}{{ 2}} (1-e^{2} )\), we have \(\frac{\partial p_{c}^{*} }{\partial e} =\frac{(1-\lambda )\lambda q}{2(1+e-\lambda )^{2} } >0\) and \(\frac{\partial p_{\textrm{r}}^{*} }{\partial e} =\frac{q((1+e)^{2} -(1+2e)\lambda )}{2(1+e-\lambda )^{2} } >0\). When \(\lambda \le \frac{{ 1}}{{ 2}} (1-e^{2} )\), \(\frac{\partial p_{\textrm{c}}^{*} }{\partial e} =-\frac{q((1+e)^{2} -4\lambda )(1-\lambda )}{(-3+4\lambda -(2-e)e)^{2} } \). Therefore, if \(\lambda <\min \{ \frac{(1+e)^{2} }{{ 4}},\frac{{ 1}}{{ 2}} (1-e^{2} )\} \), \( \frac{\partial p_{\textrm{c}}^{*} }{\partial e} <0\); if \(\frac{(1+e)^{2} }{{ 4}} <\lambda \le \frac{{ 1}}{{ 2}} (1-e^{2} )\), \( \frac{\partial p_{\textrm{c}}^{*} }{\partial e} >0\); \(\frac{\partial p_{\textrm{r}}^{*} }{\partial e} =\frac{q((1+e)^{2} -4e\lambda )}{(-3+4\lambda -(2-e)e)^{2} } >0\) always holds. \(\square \)
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xu, Y., Wang, X. & Zhou, Q. Pricing and Quality Strategies in Crowdfunding with Network Externality. J Optim Theory Appl 196, 98–125 (2023). https://doi.org/10.1007/s10957-022-02117-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-022-02117-9