Skip to main content

Advertisement

Log in

Complexity Analysis of a Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a full-Newton step interior-point method for solving monotone Weighted Linear Complementarity Problem. We use the technique of algebraic equivalent transformation (AET) of the nonlinear equation of the system which defines the central path. The AET is based on the square root function which plays an important role in computing the new search directions. The algorithm uses only full-Newton steps at each iteration, and hence, line searches are no longer needed. We prove that the algorithm has a quadratic rate of convergence to the target point on the central path. The obtained iteration bound coincides with the best known iteration bound for these types of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achache, M.: Complexity analysis and numerical implementation of a short-step primal-dual algorithm for linear complementarity problems. Appl. Math. Comput. 216, 1889–1895 (2010)

    MathSciNet  Google Scholar 

  2. Ahmadi, K., Hasani, F., Kheirfam, B.: A full-Newton step infeasible interior-point algorithm based on Darvay directions for linear optimization. J. Math. Model. Algorithms Oper. Res. 13, 191–208 (2014)

    Article  MathSciNet  Google Scholar 

  3. Anstreicher, K.M.: Interior-point algorithms for a generalization of linear programming and weighted centering. Optim. Methods Softw. 2, 605–612 (2012)

    Article  Google Scholar 

  4. Asadi, S., Darvay, Zs., Lesaja, G., Mahdavi-Amiri, N., Potra, F.A.: A full-Newton step interior-point method for monotone weighted linear complementarity problems. J. Optim. Theory Appl. 186, 864–878 (2020)

    Article  MathSciNet  Google Scholar 

  5. Chi, X.N., Wang, G.Q.: A full-Newton step infeasible interior-point method for the special weighted linear complementarity problem. J. Optim. Theory Appl. 190, 108–129 (2021)

    Article  MathSciNet  Google Scholar 

  6. Chi, X.N., Wan, Z.P., Hao, Z.J.: A full-modified-Newton step \(O(n)\) infeasible interior-point method for the special weighted linear complementarity problem. J. Ind. Manag. Optim. 18, 2579–2598 (2022)

    Article  MathSciNet  Google Scholar 

  7. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego, CA (1992)

    Google Scholar 

  8. Darvay, Zs.: New interior-point algorithm in linear programming: Adv. Model. Optim. 5, 51–92 (2003)

    MathSciNet  Google Scholar 

  9. Kheirfam, B.: A new infeasible interior-point method based on Darvay’s technique for symmetric optimization. Ann. Oper. Res. 211, 209–224 (2013)

    Article  MathSciNet  Google Scholar 

  10. Kheirfam, B.: A predictor-corrector interior-point algorithm for \(P_*(\kappa )\)-horizontal linear complementarity problem. Numer. Algorithms 60, 349–361 (2014)

    Article  Google Scholar 

  11. Lesaja, G., Potra, F.A.: Adaptive full Newton-step infeasible interior-point method for sufficient horozontal LCP. Optim. Methods Softw. 34, 1014–1034 (2018)

    Article  Google Scholar 

  12. Mansouri, H., Pirhaji, M.: A polynomial interior-point algorithm for monotone linear complementarity problems. J. Optim. Theory Appl. 157, 451–461 (2013)

    Article  MathSciNet  Google Scholar 

  13. Potra, F.A.: Weighted complementarity problems- a new paradigm for computing equilibria. SIAM J. Optim. 2, 1634–1654 (2012)

    Article  MathSciNet  Google Scholar 

  14. Potra, F.A.: Sufficient weighted complementarity problems. Comput. Optim. Appl. 64, 467–488 (2016)

    Article  MathSciNet  Google Scholar 

  15. Roos, C., Terlaky, T., Vial, J.-Ph.: Theory and Algorithms for Linear Optimization. An Interior-Point Approach. John Wiley & Sons, Chichester, UK (1997)

    Google Scholar 

  16. Tang, J.Y., Zhang, H.C.: A nonmonotone smoothing Newton algorithm for weighted complementarity problems. J. Optim. Theory Appl. 189, 679–715 (2021)

    Article  MathSciNet  Google Scholar 

  17. Tang, J.Y., Zhou, J.C.: A modified damped Guass–Newton method for non-monotone weighted linear complementarity problems. Optim. Methods Softw. 37, 1145–1164 (2022)

    Article  MathSciNet  Google Scholar 

  18. Tang, J.Y., Zhou, J.C.: Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem. Comput. Optim. Appl. 80, 213–244 (2021)

    Article  MathSciNet  Google Scholar 

  19. Wang, G.Q., Bai, Y.: A new primal-dual path-following interior-point algorithm for semidefinite optimization. J. Math. Anal. Appl. 353, 339–349 (2009)

    Article  MathSciNet  Google Scholar 

  20. Wang, G.Q., Bai, Y.: A primal-dual interior-point algorithm for second-order cone optimization with full Nesterov–Todd step. Appl. Math. Comput. 215, 1047–1061 (2009)

    MathSciNet  Google Scholar 

  21. Wang, G.Q., Bai, Y.: A new full Nesterov–Todd step primal-dual path-following interior-point algorithm for symmetric optimization. J. Optim. Theory Appl. 154, 966–985 (2012)

    Article  MathSciNet  Google Scholar 

  22. Zhang, J.: A smoothing Newton algorithm for weighted linear complementarity problem. Optim. Lett. 10, 499–509 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Kheirfam.

Additional information

Communicated by Goran Lesaja.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirfam, B. Complexity Analysis of a Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems. J Optim Theory Appl 202, 133–145 (2024). https://doi.org/10.1007/s10957-022-02139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02139-3

Keywords

Mathematics Subject Classification