Skip to main content
Log in

A Trust Region Method for Solving Multicriteria Optimization Problems on Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We extend and analyze the trust region method for solving smooth and unconstrained multicriteria optimization problems on Riemannian manifolds. At each iteration of this method, a quadratic model is assigned to each component of the vectorial objective function by considering the notion of retractions. Then, a subproblem is constructed and solved to find a new descent direction. Furthermore, we investigate the convergence behavior of the algorithm by considering radially Lipschitz continuously differentiable functions. In the end, the algorithm is implemented on three examples, and the corresponding numerical results showing the efficiency of the proposed method are reported as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007). https://doi.org/10.1007/s10208-005-0179-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms On Matrix Manifolds. Princeton University Press, Princeton (2009). https://doi.org/10.1515/9781400830244

    Book  MATH  Google Scholar 

  3. Absil, P.A., Malick, J.: Projection-like retractions on matrix manifolds. SIAM J. Optim. 22(1), 135–158 (2012). https://doi.org/10.1137/100802529

    Article  MathSciNet  MATH  Google Scholar 

  4. Ashry, G.A.: On globally convergent multi-objective optimization. Appl. Math. Comput. 183(1), 209–216 (2006). https://doi.org/10.1016/j.amc.2006.05.126

    Article  MathSciNet  MATH  Google Scholar 

  5. Bento, G.C., Cruz Neto, J.X.: A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159(1), 125–137 (2013). https://doi.org/10.1007/s10957-013-0307-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012). https://doi.org/10.1007/s10957-011-9984-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Bento, G.C., Cruz Neto, J.X., Santos, P.S.M.: An inexact steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 159(1), 108–124 (2013). https://doi.org/10.1007/s10957-013-0305-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Bento, G.C., Cruz Neto, J.X., Meireles, L.V.: Proximal point method for locally Lipschitz functions in multiobjective optimization of Hadamard manifolds. J. Optim. Theory Appl. 179(1), 37–52 (2018). https://doi.org/10.1007/s10957-018-1330-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Berkemeier, M., Peitz, S.: Derivative-free multiobjective trust region descent method using radial basis function surrogate models. Math. Comput. Appl. 26(2), 31 (2021). https://doi.org/10.3390/mca26020031

    Article  Google Scholar 

  10. Boumal, N.: An Introduction to Optimization on Smooth Manifolds. Available online, (2020) http://www.nicolasboumal.net/book

  11. Cai, T., Song, L., Li G., Liao, M.: Multi-task learning with Riemannian optimization. In: Huang, D.S., Jo, K.H., Li, J., Gribova, V., Hussain, A. (eds.): International Conference on Intelligent Computing, 499–509, Springer, Cham (2021) https://doi.org/10.1007/978-3-030-84529-2_42

  12. Cambier, L., Absil, P.A.: Robust low-rank matrix completion by Riemannian optimization. SIAM J. Sci. Comput. 38(5), 440–460 (2016). https://doi.org/10.1137/15M1025153

    Article  MathSciNet  MATH  Google Scholar 

  13. Carrizo, G.A., Lotito, P.A., Maciel, M.C.: Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem. Math. Program. 159, 339–369 (2016). https://doi.org/10.1007/s10107-015-0962-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, S., Deng, Z., Ma, S., So, A.M.C.: Manifold proximal point algorithms for dual principal component pursuit and orthogonal dictionary learning. IEEE Trans. Signal Proc. 69, 4759–4773 (2021). https://doi.org/10.1109/TSP.2021.3099643

    Article  MathSciNet  MATH  Google Scholar 

  15. Ehrgott, M.: Multicriteria Optimization, vol. 491. Springer, New York (2005)

    MATH  Google Scholar 

  16. Ferreira, O.P., Iusem, A.N., Nmeth, S.Z.: Concepts and techniques of optimization on the sphere. TOP 22(3), 1148–1170 (2014). https://doi.org/10.1007/s11750-014-0322-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferreira, O.P., Louzeiro, M.S., Prudente, L.F.: Gradient method for optimization on Riemannian manifolds with lower bounded curvature. SIAM J. Optim. 29(4), 2517–2541 (2019). https://doi.org/10.1137/18M1180633

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferreira, O.P., Louzeiro, M.S., Prudente, L.F.: Iteration-complexity and asymptotic analysis of steepest descent method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 184(2), 507–533 (2020). https://doi.org/10.1007/s10957-019-01615-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009). https://doi.org/10.1137/08071692X

    Article  MathSciNet  MATH  Google Scholar 

  20. Golub, G.H., Van Loan, C.F.: Matrix Computations. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  21. Heidel, G., Schulz, V.: A Riemannian trustregion method for lowrank tensor completion. Numer. Linear Algebra Appl. 25(6), e2175 (2018). https://doi.org/10.1002/nla.2175

    Article  MATH  Google Scholar 

  22. Hosseini, R., Sra, S.: Matrix manifold optimization for Gaussian mixtures. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., (eds.): Advances in Neural Information Processing Systems 28, 910–918 (2015)

  23. Hosseini, R., Sra, S.: An alternative to EM for Gaussian mixture models: batch and stochastic Riemannian optimization. Math. Program. 181(1), 187–223 (2020). https://doi.org/10.1007/s10107-019-01381-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Hosseini, R., Sra, S.: Recent advances in stochastic Riemannian optimization. In: Grohs, P., Holler, M., Weinmann, A., (eds.): Handbook of Variational Methods for Nonlinear Geometric Data, Springer, Cham 527–554 (2020) https://doi.org/10.1007/978-3-030-31351-7_19

  25. Hu, J., Milzarek, A., Wen, Z., Yuan, Y.: Adaptive quadratically regularized Newton method for Riemannian optimization. SIAM J. Matrix Anal. Appl. 39(3), 1181–1207 (2018). https://doi.org/10.1137/17M1142478

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, W., Gallivan, K.A., Absil, P.A.: A Broyden class of quasi-Newton methods for Riemannian optimization. SIAM J. Optim. 25(3), 1660–1685 (2015). https://doi.org/10.1137/140955483

    Article  MathSciNet  MATH  Google Scholar 

  27. Jeuris, B., Vandebril, R., Vandereycken, B.: A survey and comparison of contemporary algorithms for computing the matrix geometric mean. Electron. Trans. Numer. Anal. 39, 379–402 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature. Springer, New York (1997)

    Book  MATH  Google Scholar 

  29. Lee, J.M.: Smooth Manifolds: Introduction to Smooth Manifolds. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-9982-5-1

    Book  MATH  Google Scholar 

  30. Lucambio Pérez, L.R., Prudente, L.F.: Nonlinear conjugate gradient methods for vector optimization. SIAM J. Optim. 28(3), 2690–2720 (2018). https://doi.org/10.1137/17M1126588

    Article  MathSciNet  MATH  Google Scholar 

  31. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  32. Qu, S., Goh, M., Liang, B.: Trust region methods for solving multiobjective optimisation. Optim. Methods Softw. 28(4), 796–811 (2013). https://doi.org/10.1080/10556788.2012.660483

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, W., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming. Springer, New York (2006)

    MATH  Google Scholar 

  34. Thomann, J., Eichfelder, G.: A trust-region algorithm for heterogeneous multiobjective optimization. SIAM J. Optim. 29(2), 1017–1047 (2019). https://doi.org/10.1137/18M1173277

    Article  MathSciNet  MATH  Google Scholar 

  35. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and its Applications, vol. 297. Springer Science & Business Media, Doedecht (1994)

  36. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23(2), 1214–1236 (2013). https://doi.org/10.1137/110845768

    Article  MathSciNet  MATH  Google Scholar 

  37. Villacorta, K.D., Oliveira, P.R., Soubeyran, A.: A trust-region method for unconstrained multiobjective problems with applications in satisficing processes. J. Optim. Theory Appl. 160(3), 865–889 (2014). https://doi.org/10.1007/s10957-013-0392-7

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, J., Wang, X., Li, C., Yao, J.C.: Convergence analysis of gradient algorithms on Riemannian manifolds without curvature constraints and application to Riemannian mass. SIAM J. Optim. 31(1), 172–199 (2021). https://doi.org/10.1137/19M1289285

    Article  MathSciNet  MATH  Google Scholar 

  39. Wei, H., Wei, H.Y.: A Riemannian subspace limited-memory SR1 trust region method. Optim. Lett. 10(8), 1705–1723 (2016). https://doi.org/10.1007/s11590-015-0977-1

    Article  MathSciNet  MATH  Google Scholar 

  40. Yuan, X., Huang, W., Absil, P.A., Gallivan, K.A.: A Riemannian quasi-Newton method for computing the Karcher mean of symmetric positive definite matrices, Technical Report FSU17-02, Florida State University (2017)

  41. Zhang, T., Yang, Y.: Robust PCA by manifold optimization. J. Mach. Learn. Res. 19(80), 1–39 (2018)http://jmlr.org/papers/v19/17-473.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Najafi.

Additional information

Communicated by Ana Luisa Custodio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, N., Najafi, B. & Vaezpour, S.M. A Trust Region Method for Solving Multicriteria Optimization Problems on Riemannian Manifolds. J Optim Theory Appl 196, 212–239 (2023). https://doi.org/10.1007/s10957-022-02142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02142-8

Keywords

Mathematics Subject Classification

Navigation