Skip to main content
Log in

Uniqueness in Nuclear Norm Minimization: Flatness of the Nuclear Norm Sphere and Simultaneous Polarization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we establish necessary and sufficient conditions for the existence of line segments (or flats) in the sphere of the nuclear norm via the notion of simultaneous polarization and a refined expression for the subdifferential of the nuclear norm. This is then leveraged to provide (point-based) necessary and sufficient conditions for uniqueness of solutions for minimizing the nuclear norm over an affine subspace. We further establish an alternative set of sufficient conditions for uniqueness, based on the interplay of the subdifferential of the nuclear norm and the range of the problem-defining linear operator. Finally, we show how to transfer the uniqueness results for the original problem to a whole class of nuclear norm-regularized minimization problems with a strictly convex fidelity term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Of course, we assume throughout that this problem is feasible.

  2. Nuclear norm minimization contains \(\ell _1\)-minimization as a special case since \(x\in {\mathbb {R}}^n\) can be identified with a diagonal matrix \(\textrm{diag}(x)\) for which \(\Vert \textrm{diag}(x)\Vert _*=\Vert x\Vert _1\).

  3. The nuclear norms of X and \(X^T\) are equal; the linear equation \({\mathcal {A}}(X)=b\) can always be rewritten in terms of \(X^T\).

  4. Flats, in the context of Riemannian geometry, are (uncurved) Euclidean submanifolds.

  5. Sometimes this is also called the ‘angular’ part of the polar decomposition.

  6. See Sect. 3.1 for a discussion of \(W(\bar{X})\).

References

  1. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization Theory and Examples. Springer, New York (2000)

    MATH  Google Scholar 

  2. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fazel, M: Matrix rank minimization with applications, Ph.D. thesis, Stanford University, 2002

  5. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing Series on Applied and Numerical Harmonic Analysis. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  6. Gilbert, J.C.: On the solution uniqueness characterization in the L1 norm and polyhderal gauge recovery. J. Optim. Theory Appl. 172, 70–101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gilbert, J.C., Fragments d’Optimisation Différentiable—Théorie et Algorithmes. Lecture Notes (in French) of courses given at ENSTA and at Paris-Saclay University, Saclay, France, (2021) https://hal.inria.fr/hal-03347060/document

  8. Hiriart-Urruty, J.-B., Le, H.Y.: A variational approach of the rank function. Top 21, 207–240 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hiriart-Urrruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren Tex Editions, Springer, Berlin, Heidelberg (2001)

    Book  MATH  Google Scholar 

  10. Horn, R., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  11. Lewis, A.S.: The convex analysis of unitarily invariant matrix functions. J. Convex Anal. 2(1), 173–183 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Lewis, A.S.: The convex analysis of Hermitian matrices. SIAM J. Optim. 6(1), 165–177 (1995)

    MathSciNet  Google Scholar 

  13. Lewis, A.S., Sendov, H.S.: Nonsmooth analysis of singular values part I: theory. Set-Valued Anal. 13, 213–241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mirsky, L.: A trace inequality of John von Neumann. Monatshefte Math. 79, 303–306 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  18. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  19. de Sá, E.M.: Exposed faces and duality for symmetric and unitarily invariant norms. Linear Algebra Appl. 197–198, 429–450 (1994)

    MathSciNet  MATH  Google Scholar 

  20. de Sá, E.M.: Faces of the unit ball of a unitarily invariant norm. Linear Algebra Appl. 197–198, 451–493 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Stiefel, E.: Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten. Comment. Math. Helv. 8(4), 305–353 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  22. von Neumann, J.: Some matrix inequalities and metrization of matric-space. Tomsk University Review, pp. 205–218. Pergamon Press, Oxford (1962)

  23. Watson, G.A.: Characterization of the subdifferential of some matrix norms. Linear Algebra Appl. 170, 33–45 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Watson, G.A.: On matrix approximation problems with Ky Fan k norms. Num. Algorithms 5, 263–272 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zietak, K.: On the characterization of the extremal points of the unit sphere of matrices. Linear Algebra Appl. 106, 57–75 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zietak, K.: Subdifferentials, faces, and dual matrices. Linear Algebra Appl. 185, 125–141 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H., Yin, W., Cheng, L.: Necessary and sufficient conditions of solution uniqueness in 1-norm minimization. J. Optim. Theory Appl. 164, 109–122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous referees for their extremely valuable comments which substantially improved the presentation of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Hoheisel.

Additional information

Communicated by Nicolas Hadjisavvas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoheisel, T., Paquette, E. Uniqueness in Nuclear Norm Minimization: Flatness of the Nuclear Norm Sphere and Simultaneous Polarization. J Optim Theory Appl 197, 252–276 (2023). https://doi.org/10.1007/s10957-023-02167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02167-7

Keywords

Mathematics Subject Classification

Navigation