Skip to main content
Log in

Multi-period Optimization for Long-Term Oilfield Production Planning

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this work, a multi-period nonlinear programming formulation is presented to obtain the optimal long-term oilfield production planning, based on a two-phase, one-dimensional, and Cartesian-coordinated phenomenological reservoir model. The phenomenological model contains a set of second-order partial differential equations, which are approximated by a collocation on finite element method. This CFE method prevents mathematical stability limitations due to stiffness problems, resulting in an algebraic equation system added as an optimization set of constraints. This is a significant and innovating approach as there are only a handful of similar studies in the literature that integrate phenomenological models as mathematical constraints in the optimization problem. However, these works do not solve the model using long-term production planning coupled with a simultaneous strategy. Also, formulation applied to two study cases allowed solving the optimization problem within an adequate time without requiring a high-performance computing platform. Results show the economic impact of simultaneously considering the constraints and the state variables evolution throughout the reservoir’s life span to obtain the optimal long-term production planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A\) :

Transversal area [ft2]

\(\dot{B}\) :

Oil formation volumetric factor [reservoir Bbl/STB]

\(\overline{B}\) :

Water formation volumetric factor [reservoir Bbl/STB]

\(\dot{C}\) :

Oil compressibility [psi1]

\(\tilde{C}\) :

Total compressibility [psi1]

\({\text{Coil}}\) :

Lifting cost [USD/STB]

\(\overline{C}\) :

Water compressibility [psi1]

\({\text{Cwat}}\) :

Disposal water cost [USD/STB]

\(\hat{C}\) :

Rock compressibility [psi1]

\(\dot{d}\) :

Number of temporal finite elements [−]

\(\dot{e}\) :

Number of spatial finite elements [−]

\(\dot{G}\) :

Oil geometry factor [reservoir Bbl]

\(\overline{G}\) :

Water geometry factor [reservoir Bbl]

\(h\) :

Reservoir thickness [ft]

\(K\) :

Absolute permeability [mD]

\(\dot{K}\) :

Oil relative permeability [−]

\(\overline{K}\) :

Water relative permeability [−]

\(\dot{M}\) :

Temporal collocation matrix [−]

\(\overline{M}\) :

Spatial collocation matrix [−]

\(\dot{n}\) :

Oil exponent for Brooks–Corey function [−]

\(\overline{n}\) :

Water exponent for Brooks–Corey function [−]

\(P\) :

Pressure [psi]

\({\text{Pi}}\) :

Initial reservoir pressure [psi]

\({\text{Po}}\) :

Pressure at the left limit of the reservoir [psi]

\({\text{Pf}}\) :

Pressure at the right limit of the reservoir [psi]

\({\text{Pwf}}\) :

Bottom-hole flowing pressure [psi]

\(\widetilde{{{\text{Pwf}}}}\) :

Minimum bottom-hole flowing pressure [psi]

\(\dot{Q}\) :

Volume rate of oil produced per block volume unit [STBPD]

\(\overline{Q}\) :

Volume rate of water produced per block volume unit [STBPD]

\(\dot{r}\) :

Number of temporal collocation points [−]

\(\overline{r}\) :

Effective ratio [ft]

\(\hat{r}\) :

Wellbore ratio [ft]

\(S\) :

Skin factor [−]

\(\dot{S}\) :

Oil saturation [(oil volume-Bbl)/(pore volume-Bbl)]

\(\overline{S}\) :

Water saturation [(water volume-Bbl)/(pore volume-Bbl)]

\(\tilde{S}\) :

Initial reservoir oil saturation [(oil volume-Bbl)/(pore volume-Bbl)]

\(\ddot{S}\) :

Irreducible oil saturation [(oil volume-Bbl)/(Pore volume-Bbl)]

\(\hat{S}\) :

Initial reservoir water saturation [(water vol-Bbl)/(pore vol-Bbl)]

\(\overline{\overline{S}}\) :

Connate water saturation [(water volume-Bbl)/(pore volume-Bbl)]

\(\dot{T}\) :

Oil transmissibility [STBPD/psi]

\(\overline{T}\) :

Water transmissibility [STBPD/psi]

\(\tilde{T}\) :

Time horizon [years]

\(V\) :

Oil selling prices [USD]

\(x\) :

Spatial dimension [ft]

\(\dot{y}\) :

Number of spatial collocation points [−]

\(\dot{z}\) :

Number of wells drilled [−]

\(\overline{Z}\) :

Well’s location

\(\Delta x\) :

Length finite reservoir element [ft]

\(\Delta y\) :

Width of finite spatial element [ft]

\(\Delta z\) :

Length of finite temporal element [days]

\(\dot{\mu }{ }\) :

Oil viscosity [cP]

\(\overline{\mu }\) :

Water viscosity [cP]

\(\emptyset\) :

Porosity [pore volume (ft3)/bulk volume (ft3)]

\(\dot{\psi }\) :

Water relative permeability at connate water saturation [−]

\(\overline{\psi }\) :

Water relative permeability at irreducible oil saturation [−]

\(D\) :

Temporal finite elements for OCFE method 1, 2,…,\(\dot{d}\)

\(E\) :

Spatial finite elements for OCFE method 1, 2,…,\(\dot{e}\)

\(R\) :

Temporal collocation points 1,…,\(\dot{r}\)

\(Y\) :

Spatial collocation points 1,…,\(\dot{y}\)

\(Z\) :

Drilled wells 1, 2,…,\(\dot{z}\)

\(d\) :

Temporal finite element position for CFE method

\(e\) :

Spatial finite element position for CFE method

\(r\) :

Temporal collocation point position for CFE method

\(y\) :

Spatial collocation point position for CFE method

\(z\) :

Drilled well

\({\text{CFE}}\) :

Collocation on finite elements method

\({\text{DE}}\) :

Differential equations

\({\text{FD}}\) :

Finite difference method

\({\text{HPC}}\) :

High-performance computing

\({\text{IBC}}\) :

Inter-element boundaries

\({\text{IMPES}}\) :

Implicit pressure explicit saturation

\({\text{IPOPT}}\) :

Interior point optimizer

\({\text{MILP}}\) :

Mixed-integer linear programming

\({\text{MINLP}}\) :

Mixed-integer nonlinear programming

\({\text{MIP}}\) :

Mixed-integer programming

\({\text{NPV}}\) :

Net present value

\({\text{PDE}}\) :

Partial differential equations

References

  1. Ahmadun, F.-R., Pendashteh, A., Abdullah, L.C., Biak, D.R.A., Madaeni, S.S., Abidin, Z.Z.: Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 170(02–03), 530–551 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.044

    Article  Google Scholar 

  2. Alenezi, F., Mohaghegh, S.: Developing a smart proxy for the SACROC water-flooding numerical reservoir simulation model. SPE West. Reg. Meet. Proc. (2017). https://doi.org/10.2118/185691-ms

    Article  Google Scholar 

  3. Alzayer, H., Jahanbakhsh, A., Sohrabi, M.: The role of capillary-pressure in improving the numerical simulation of multi-phase flow in porous media. SPE Reserv. Charact. Simul. Conf. Exhib. (2017). https://doi.org/10.2118/186052-ms

    Article  Google Scholar 

  4. Anderson, J.A.E., Gillis, J., Horn, G., Rawling, J.B., Diehl, M.: CasADI: A software framework for nonlinear optimization and optimal control. Math. Program. Comput. 11, 1–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arora, S., Dhaliwal, S.S., Kukreja, V.K.: Solution of two-point boundary value problems using orthogonal collocation on finite elements. Appl. Math. Comput. 171(01), 358–370 (2005). https://doi.org/10.1016/j.amc.2005.01.049

    Article  MathSciNet  MATH  Google Scholar 

  6. Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., Mekhilef, S.: A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 16(04), 2070–2093 (2012). https://doi.org/10.1016/j.rser.2012.01.003

    Article  Google Scholar 

  7. Awasthi, U., Marmier, R., Grossmann, I.E.: Multiperiod optimization model for oilfield production planning: bicriterion optimization and two-stage stochastic programming model. Optim. Eng. 20, 1227–1248 (2019). https://doi.org/10.1007/s11081-019-09455-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Aziz, K., Settary, A.: Petroleum Reservoir Simulation. Applied Science Publishers, London (1979)

    Google Scholar 

  9. Biegler, L.: Nonlinear programming strategies for dynamic chemical process optimization. Theor. Found. Chem. Eng. 48, 541–554 (2014). https://doi.org/10.1134/S0040579514050157

    Article  Google Scholar 

  10. Bieker, H.P., Slupphaug, O., Johansen, T.A.: Real-time production optimization of oil and gas production systems: a technology survey. SPE Prod. Oper. 22(04), 382–391 (2007). https://doi.org/10.2118/99446-PA

    Article  Google Scholar 

  11. Borthne, G.: Development of a material-balance and inflow-performance model for oil and gas-condesate reservoir. Norwegian Institute of Technology (1986)

  12. Brooks, R., Corey, A.: Hydraulic Properties of Porous Media. Hydrology Papers, Colorado State University, Fort Collins (1964)

  13. Carroll, J.A., Horne, R.N.: Multivariate optimization of production systems. J. Petrol. Technol. 44(07), 782–831 (1991). https://doi.org/10.2118/22847-pa

    Article  Google Scholar 

  14. Cordazzo, J., Maliska, C.R., da Silva, A.F.C., Maliska, C.R., Fabio, A.: Interblock transmissibility calculation analysis for petroleum reservoir simulation. In: 2nd Meeting on Reservoir Simulation, Buenos Aires (2002)

  15. Dzubur, L., Langvik, A.S.: Optimization of oil production - applied to the Marlim field. Norwegian University of Science and Technology (2012)

  16. Gao, X., Xie, Y., Wang, S., Wu, M., Wang, Y., Tan, C., Zuo, X., Chen, T.: Offshore oil production planning optimization: an MINLP model considering well operation and flow assurance. Comput. Chem. Eng. (2020). https://doi.org/10.1016/j.compchemeng.2019.106674

    Article  Google Scholar 

  17. Gerogiorgis, D.I., Kosmidis, V.D., Pistikopoulos, E.N.: Mixed integer optimization in well scheduling. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, pp. 2247–2270. Springer, Boston (2008)

    Chapter  Google Scholar 

  18. Ghanaei, E., Rahimpour, M.R.: Evaluation of orthogonal collocation and orthogonal collocation on finite element method using genetic algorithm in the pressure profile prediction in petroleum reservoirs. J. Petrol. Sci. Eng. 74(1–2), 41–50 (2010). https://doi.org/10.1016/j.petrol.2010.08.005

    Article  Google Scholar 

  19. Gómez, A., Rico, V., Castro, S.: Mixed-integer multiperiod model for the planning of oilfield production. Comput. Aided Chem. Eng. 9, 907–912 (2001). https://doi.org/10.1016/S1570-7946(01)80145-0

    Article  Google Scholar 

  20. Guarín Arenas, F., Garcia, C.A., Diaz Prada, C.A., Cotes Leon, E., Santos, N.: A new inflow model for extra-heavy crude oils: case study chichimene field, Colombia. In: SPE Latin American and Caribbean Petroleum Engineering Conference Proceedings (2010). https://doi.org/10.2118/138934-ms

  21. Gunnerud, V., Foss, B., Nygreen, B., Vestbø, R., Walberg, N.C.: Dantzig-Wolfe decomposition for real-time optimization - applied to the troll west oil rim. IFAC Proc. Vol. 42(11), 69–75 (2009). https://doi.org/10.3182/20090712-4-tr-2008.00012

    Article  Google Scholar 

  22. Heever, S.A., Grossmann, I.E.: An iterative aggregation/disaggregation approach for the solution of a mixed-integer nonlinear oilfield infrastructure planning model. Ind. Eng. Chem. Res. 39(6), 1955–1971 (2000). https://doi.org/10.1021/ie9906619

    Article  Google Scholar 

  23. Hülse, E.O., Camponogara, E.: Robust formulations for production optimization of satellite oil wells. Eng. Optim. 49(5), 846–863 (2017). https://doi.org/10.1080/0305215X.2016.1211128

    Article  MathSciNet  Google Scholar 

  24. IEA: World energy outlook. International Energy Agency. https://www.iea.org/reports/oil-market-report-december-2022 (2019). Accessed 26 Oct 2022

  25. Kassem, A., Ali, F., Islam, M.R.: Petroleum Reservoir Simulation. Gulf Publication Company, Houston (2006)

    Google Scholar 

  26. Kee, R.J., Dwyert, H.A.: Review of stiffness and implicit finite-difference methods in combustion modeling. American Institute of Aeronautics and Astronautics (1981)

  27. Nategh, M., Vaferi, B., Riazi, M.: Orthogonal collocation method for solving the diffusivity equation: application on dual porosity reservoirs with constant pressure outer boundary. J. Energy Resour. Technol. Trans. ASME 141(4), 1–9 (2018). https://doi.org/10.1115/1.4041842

    Article  Google Scholar 

  28. Nova, A., Sochard, S., Serra, S., Reneaume, J.M.: Dynamic simulation and optimal operation of district cooling networks via 2D orthogonal collocation. Energy Convers. Manag. (2020). https://doi.org/10.1016/j.enconman.2020.112505

    Article  Google Scholar 

  29. Nygreen, B., Christiansen, M., Haugen, K., Bjørkvoll, T., Kristiansen, Ø.: Modelling Norwegian petroleum production and transportation. Ann. Oper. Res. 82, 251–268 (1998)

    Article  MATH  Google Scholar 

  30. Peery, J.H., Herron, E.H.: Three-phase reservoir simulation. J. Petrol. Technol. 21(02), 211–220 (1969). https://doi.org/10.2118/2015-pa

    Article  Google Scholar 

  31. Rahmawati, S.D., Whitson, C.H., Foss, B., Kuntadi, A.: Integrated field operation and optimization. J. Petrol. Sci. Eng. 81, 161–170 (2012). https://doi.org/10.1016/j.petrol.2011.12.027

    Article  Google Scholar 

  32. Redutskiy, Y.: Integration of oilfield planning problems: infrastructure design, development planning and production scheduling. J. Petrol. Sci. Eng. 158, 585–602 (2017). https://doi.org/10.1016/j.petrol.2017.08.066

    Article  Google Scholar 

  33. Sayarpour, M., Zuluaga, E., Kabir, C.S., Lake, L.W.: The use of capacitance–resistance models for rapid estimation of waterflood performance and optimization. J. Petrol. Sci. Eng. 69(3–4), 227–238 (2009). https://doi.org/10.1016/j.petrol.2009.09.006

    Article  Google Scholar 

  34. Settari, A., Aziz, K.: A computer model for two-phase coning simulation. Soc. Petrol. Eng. J. 14(3), 221–236 (1974). https://doi.org/10.2118/4285-pa

    Article  Google Scholar 

  35. Shakhsi-Niaei, M., Iranmanesh, S.H., Torabi, S.A.: Optimal planning of oil and gas development projects considering long-term production and transmission. Comput. Chem. Eng. 65, 67–80 (2014). https://doi.org/10.1016/j.compchemeng.2014.03.002

    Article  Google Scholar 

  36. Snyder, L.J.: Two-phase reservoir flow calculations. Soc. Petrol. Eng. J. 9(02), 170–182 (1968). https://doi.org/10.2118/2014-pa

    Article  Google Scholar 

  37. Tavallali, M.S., Karimi, I.A., Teo, K.M., Baxendale, D., Ayatollahi, S.: Optimal producer well placement and production planning in an oil reservoir. Comput. Chem. Eng. 55, 109–125 (2013). https://doi.org/10.1016/j.compchemeng.2013.04.002

    Article  Google Scholar 

  38. Viswanathan, J., Grossmann, I.E.: A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990). https://doi.org/10.1016/0098-1354(90)87085-4

    Article  Google Scholar 

  39. Vogel, J.V.: Inflow performance relationships for solution-gas drive wells. J. Petrol. Technol. 20(01), 83–92 (1968). https://doi.org/10.2118/1476-PA

    Article  Google Scholar 

  40. Wei W.: Advances in newton- based barrier methods for nonlinear programming. Carnegie Mellon University (2017)

  41. Zubarev, D.I.: Pros and cons of applying a proxy model as a substitute for full reservoir simulations. SPE Annu. Tech. Conf. Exhib. (2009). https://doi.org/10.2118/124815-MS

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the handling editor and the anonymous referees for their valuable remarks, comments, and new references, which helped to improve the original presentation. This research was supported by the Chemical Engineering Department of Universidad de los Andes in Bogota, Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizzet Vargas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Emanuele Galligani.

Appendix A

Appendix A

Before implementing CFE method in the phenomenological model, the terms that contain the second-order spatial derivative must be reduced to Eqs. 32 and 33:

$$ \frac{\partial }{\partial x}\left[ {A\frac{{K\dot{K}}}{{\dot{\mu }}} \frac{\partial P}{{\partial x}}} \right] = \frac{{\partial \dot{U}}}{\partial x} $$
(32)
$$ \frac{\partial }{\partial x}\left[ {A\frac{{K\overline{K}}}{{\overline{\mu }}} \frac{\partial P}{{\partial x}}} \right] = \frac{{\partial \overline{U}}}{\partial x} $$
(33)

where

$$ \dot{U} = 0.001127{*}A\frac{{K\dot{K}}}{{\dot{\mu }}} \frac{\partial P}{{\partial x}} $$
(34)
$$ \overline{U} = 0.001127{*}A\frac{{K\overline{K}}}{{\overline{\mu }}} \frac{\partial P}{{\partial x}} $$
(35)

When the collocation method is applied:

$$ \left. {\frac{{\partial \dot{U}}}{\partial x}} \right| _{y,e} = \frac{1}{{\Delta x_{e} }}\mathop \sum \limits_{j = 1}^{{\dot{e}}} \overline{M}_{j,y} *\dot{U}_{j,e} , \quad \forall \;y \in Y,\; e \in E $$
(36)
$$ \left. {\frac{{\partial \overline{U}}}{\partial x}} \right| _{y,e} = \frac{1}{{\Delta x_{e} }}\mathop \sum \limits_{j = 1}^{{\dot{e}}} \overline{M}x_{j,y} *\overline{U}_{j,e} , \quad \forall \;y \in Y, \;e \in E $$
(37)

Replacing Eqs. 36 and 37 in Eqs. 32 and 33, respectively,

$$ \left. {\frac{\partial }{\partial x}\left[ {A\frac{{K\dot{K}}}{{\dot{\mu }}} \frac{\partial P}{{\partial x}}} \right]} \right| _{y,e} = \frac{1}{{\Delta x_{e} }}\mathop \sum \limits_{j = 1}^{{\dot{e}}} \overline{M}_{j,y} *\left( {A\frac{{K\dot{K}}}{{\dot{\mu }}} } \right)_{j,e} *\left( {\frac{\partial P}{{\partial x}} } \right)_{j,e} , \quad \forall \;y \in Y, \;e \in E $$
(38)
$$ \left. {\frac{\partial }{\partial x}\left[ {A\frac{{K\overline{K}}}{{\overline{\mu }}} \frac{\partial P}{{\partial x}}} \right]} \right| _{y,e} = \frac{1}{{\Delta x_{e} }}\mathop \sum \limits_{j = 1}^{{\dot{e}}} \overline{M}_{j,y} *\left( {A\frac{{K\overline{K}}}{{\overline{\mu }}} } \right)_{j,e} *\left( {\frac{\partial P}{{\partial x}} } \right)_{j,e} , \quad \forall \;y \in Y, \;e \in E $$
(39)

The term \(\left( {\frac{\partial P}{{\partial x}} } \right)_{j,e}\) is approximated using the same method. The position in which this derivative is located should be considered to solve the generated system adequately, as shown from Eqs. (1115). Terms \(\left( {A\frac{{K\dot{K}}}{{\dot{\mu }}} } \right)_{j,e}\) and \(\left( {A\frac{{K\overline{K}}}{{\overline{\mu }}} } \right)_{j,e}\), also known as \(\dot{T}_{j,e}\) and \(\overline{T}_{j,e}\), refer to the fluid transmissibility and they are estimated as established by [14].

On the other hand, the phenomenological model has a first-order temporal derivative term that is discretized as done in Eq. 40.

$$ \left. {\frac{\partial P}{{\partial t}}} \right|_{y,e}^{r,d} = \frac{1}{{\Delta t_{d} }}\mathop \sum \limits_{w = 1}^{{\dot{r}}} \dot{M}_{w,r} *P_{y,e}^{w,d} , \quad \forall \;y \in Y,\; e \in E, \;r \in R, \;d \in D $$
(40)

Including time dimensions for the Eqs. 38 and 39, and assuming the terms \(\dot{T}_{j,e}\) and \(\overline{T}_{j,e}\) remains constant through each temporal element, the resulting expression are shown in Eqs. 41 and 42.

$$ \left. {\frac{\partial }{\partial x}\left[ {A\frac{{K\dot{K}}}{{\dot{\mu }}} \frac{\partial P}{{\partial x}}} \right]} \right|_{y,e}^{r,d} = \frac{1}{{\Delta x_{e} }}\mathop \sum \limits_{j = 1} \left[ {\overline{M}_{j,y} *\dot{T}_{j,e} { } *\left( {\frac{\partial P}{{\partial x}} } \right)_{j,e} } \right] ,\quad \forall \;y \in Y, \;e \in E, \;r \in R, \;d \in D $$
(41)
$$ \left. {\frac{\partial }{\partial x}\left[ {A\frac{{K\overline{K}}}{{\overline{\mu }}} \frac{\partial P}{{\partial x}}} \right]} \right|_{y,e}^{r,d} = \frac{1}{{\Delta x_{e} }}\mathop \sum \limits_{j = 1} \left[ {\overline{M}_{j,y} *{ }\overline{T}_{j,e} *\left( {\frac{\partial P}{{\partial x}} } \right)_{j,e} } \right] ,\quad \forall \;y \in Y,\; e \in E, \;r \in R,\; d \in D $$
(42)

After replacing Eqs. 42, 41 and 40 in 3, the obtained result is presented in 12. In addition, the IBC for spatial elements (see Eq. 43) are also required to ensure the solution function continuity.

$$ \frac{1}{{\Delta x_{e} }}\mathop \sum \limits_{j = 1} \left[ {\overline{M}_{{j,\dot{y}}} *P_{j,e}^{r,d} } \right] = \frac{1}{{\Delta x_{e + 1} }}\mathop \sum \limits_{j = 1} \left[ {\overline{M}_{{j,\dot{y}}} *P_{j,e + 1}^{r,d} } \right] , \quad \forall \;e \in E| e < \dot{z},\;r \in R,\;d \in D $$
(43)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristizabal, J., del Mar Prieto, M., Vargas, L. et al. Multi-period Optimization for Long-Term Oilfield Production Planning. J Optim Theory Appl 197, 71–97 (2023). https://doi.org/10.1007/s10957-023-02191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02191-7

Keywords

Navigation