Skip to main content
Log in

Boundary Approximate Controllability under Positivity Constraints of Infinite-Dimensional Control Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper focuses on boundary approximate controllability under positivity constraints of a wide range of infinite-dimensional control systems. We develop frequency-domain controllability criteria. Firstly, we derive a controllability result under positivity constraints on the control for such systems. Then, and more importantly, we provide a necessary and sufficient condition for controllability under positivity constraints on the control and the state. The obtained results are applied to the controllability of transportation and heat conduction networks. In particular, provided that the underlying graph is strongly connected, the controllability under positivity constraints on the control/state of transport network systems is fully characterized by a Kalman-type rank condition. For a system of heat equations with Robin boundary conditions on a path-like network, we establish approximate controllability under positivity state constraint with a single positive input through the starting node. However, we prove the lack of controllability under unilateral control constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, The Netherlands (2006)

    Book  MATH  Google Scholar 

  2. Altomare, F.: Korovkin-type theorems and approximation by positive linear operators. Surv. Approx. Theory. 5, 92–164 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Arendt, W.: Resolvent positive operators. Proc. London Math. Soc. 54(2), 321–349 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Arendt, W., Grabosch, A., Greiner, G., Moustakas, U., Nagel, R., Schlotterbeck, U., Groh, U., Lotz, H.P., Neubrander, F.: One-Parameter Semigroups of Positive Operators, vol. 1184. Springer, Berlin (1986)

    Google Scholar 

  6. Bátkai, A., Fijavz̃, M.K., Rhandi, A.: Positive Operator Semigroups. From Finite to Infinite Dimensions. vol. 257. Springer, Basel (2017)

  7. Boulite, S., Bouslous, H., El Azzouzi, M., Maniar, L.: Approximate positive controllability of positive boundary control system. Positivity 18(2), 375–393 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brammer, R.F.: Controllability in linear autonomous systems with positive controllers. SIAM J. Control 10(2), 339–353 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, A., Morris, K.: Well-posedness of boundary control systems. SIAM J. Control Optim. 42(4), 1244–1265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Curtain, F.R., Zwart, H.J.: An Introduction to Infinite-Dimensional Linear Systems Theory, vol. 21. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  11. El azzouzi, M., Bouslous, H., Maniar, L., Boulite, S.: Constrained approximate controllability of boundary control systems. IMA J. Math. Control Inf. 33(3), 669–683 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. El gantouh, Y.: Positivity of infinite dimensional linear systems. arXivpreprint arXiv:2208.10617 (2022)

  13. El gantouh, Y., Hadd, S., Rhandi, A.: Approximate controllabilty of network systems. Evol. Equ. Control Theory 10(4), 749–766 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Greiner, G.: Perturbing the boundary conditions of a generator. Houst. J. Math. 13(2), 213–229 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Hadd, S., Manzo, R., Rhandi, A.: Unbounded perturbations of the generator domain. Discrete Contin. Dyn. Syst. 35(2), 703–723 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klamka, J.: Positive controllability of positive dynamical systems. In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), vol. 6, pp. 4632–4637 (2002)

  17. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations: Volume 1.In Abstract Parabolic Systems: Continuous and Approximation Theories. vol. 1. Cambridge University Press, Cambridge (2000)

  18. Lions, J.L., Magens, E.: Non Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York (1972)

    Book  Google Scholar 

  19. Loheac, J., Trélat, E., Zuazua, E.: Minimal controllability time for the heat equation under unilateral state or control constraints. Math. Models Methods Appl. Sci. 27(9), 1587–1644 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mehmeti, F.A., von Below, J., Nicaise, S. (eds.): PDE’s on multistructures (Proceedings Luminy/France 1999). Lecture Notes Pure Applied Mathematics, vol. 219. Dekker, New York (2001)

  21. Mugnolo, D.: Semigroup Methods for Evolution Equations on Networks, vol. 20. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  22. Raymond, A.R.: Introduction to Tensor Products of Banach Spaces, vol. 73. Springer, London (2002)

    MATH  Google Scholar 

  23. Salamon, D.: Infinite-dimensional linear system with unbounded control and observation: a functional analytic approach. Trans. Am. Math. Soc. 300(2), 383–431 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Schaefer, H.H.: Banach Lattices and Positive Operators. In Grundlehren der Mathematischen Wissenschaften, vol. 215. Springer, Berlin (1974)

  25. Schanbacher, T.: Aspects of positivity in control theory. SIAM J. Control Optim. 27(3), 457–475 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Son, N.K.: A unified approach to constrained approximate controllability for the heat equations and the retarded equations. J. Math. Anal. Appl. 150(1), 1–19 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Staffans, O.J.: Well-Posed Linear Systems, vol. 103. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  28. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  29. Weiss, G.: Regular linear systems with feedback. Math. Control Signals Syst. 7(1), 23–57 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Enrique Zuazua for his comments and suggestions. This work has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 694126-DYCON).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine El gantouh.

Additional information

Communicated by Irena Lasiecka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we provide an appendix on technical lemmas needed for the proof of Corollary 5.1.

The following result introduces a modification of the so-called Szász–Mirakjan operator, cf. [2].

Lemma .1

Let \(f\in \mathcal {C}_b([0,+\infty )):=\{f\in {\mathcal {C}}([0,+\infty )):\;\exists \, \alpha \ge 0,\, \delta \ge 0\;\mathrm{such \, that }\; \vert f(x)\vert \le \delta e^{\alpha x} \} \) and define

$$\begin{aligned} \mathscr {M}_n(f;x):=e^{-n\varphi (x)}\sum _{k=0}^{\infty } f(\varphi ^{-1}(\tfrac{k}{n}))\frac{n^k}{k!}(\varphi (x))^k,\qquad n\ge 1,\; x\ge 0, \end{aligned}$$
(47)

where \(\varphi (x)=\frac{1}{v}(1-x)\) for \(x\in [0,1]\) and \(\varphi (x)=0\) for \(x\ge 1\). Then, the operators \(\mathscr {M}_n\) are linear positive and for every \(f\in \mathcal {C}_b([0,+\infty ))\) we have

$$\begin{aligned} \lim _{n\rightarrow +\infty }\mathscr {M}_n f=f,\qquad { \mathrm uniformly\, on} \;[0,1]. \end{aligned}$$

Proof

To prove our claim, we will use the Korovkin theorem, see, e.g., [2]. To this end, we have to prove that the operators \(\mathscr {M}_n\) preserve the functions 1, \(\varphi (x)\), \((\varphi (x))^2\). In fact, a simple computation shows

$$\begin{aligned} \mathscr {M}_n(1;x)&=1,\qquad \mathscr {M}_n(\varphi (x);x)= \varphi (x), \end{aligned}$$

and

$$\begin{aligned} \mathscr {M}_n((\varphi (x))^2;x)&= e^{-n\varphi (x)}\sum _{k=0}^{\infty } \frac{k^2}{n^2}\frac{n^k}{k!}(\varphi (x))^k\\&=(\varphi (x))^2 + \frac{1}{n}\varphi (x), \end{aligned}$$

where we have used the fact that \(\varphi ^2(\varphi ^{-1}(x))=x^2\). Therefore, from [2, Theorem 4.1], we get that

$$\begin{aligned} \lim _{n\rightarrow +\infty }\mathscr {M}_n f=f \end{aligned}$$

uniformly on [0, 1]. \(\square \)

The last lemma at the hand, one can derive the following density result.

Lemma .2

Let \(p\in [1,\infty )\) and \(v>0\) be fixed. Then,

$$\begin{aligned} \overline{co}\left( e^{-\frac{n}{v}(1-.)},\qquad n\in {\mathbb {N}}\right) =L^{p}_+([0,1]. \end{aligned}$$
(48)

Proof

Let \(p,q\in [1,\infty )\) with \(\frac{1}{p}+\frac{1}{q}=1\) and let \(g\in L^q([0,1])\) such that \( \int _{0}^{1} e^{-\frac{n}{v}(1-x)}g(x)\, dx\, \ge 0\) for all \(n\in {\mathbb {N}}\). Let \(0\le f\in \mathcal {C}([0,1])\) and define the function

$$\begin{aligned} h(x):={\left\{ \begin{array}{ll} f(x),&{} x\in [0,1],\\ f(1),&{} t\ge 1. \end{array}\right. } \end{aligned}$$

Then, \(0\le h\in \mathcal {C}_b([0,+\infty ))\) and

$$\begin{aligned}\ \int _{0}^{1} (\mathscr {M}_n h)(x)g(x)\,dx \,\ge 0. \end{aligned}$$

The continuity of f, Lemma .1 and the dominated convergence theorem further yield

$$\begin{aligned} \int _{0}^{1} f(x) g(x)\,dx\,\ge 0, \qquad \forall \, 0\le f\in \mathcal {C}([0,1]). \end{aligned}$$

Moreover, since the positive cone in \(\mathcal {C}([0,1])\) is dense in \(L^p_+([0,1])\), we get that

$$\begin{aligned} \int _{0}^{1} f(x) g(x)\,dx\,\ge 0, \qquad \forall f\in L^p_+([0,1]), \end{aligned}$$

and hence \(g\ge 0\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El gantouh, Y. Boundary Approximate Controllability under Positivity Constraints of Infinite-Dimensional Control Systems. J Optim Theory Appl 198, 449–478 (2023). https://doi.org/10.1007/s10957-023-02200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02200-9

Keywords

Mathematics Subject Classification

Navigation