Skip to main content

Advertisement

Log in

New Outer Proximal Methods for Solving Variational Inequality Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new outer proximal approach for solving the variational inequality problems in the real Euclidean space, where the feasible set is replaced by its polyhedral outer approximation. First, we prove the quasicontractiveness of the outer proximal operator. Second, we apply this property to present two new algorithms and their convergence under strongly monotone and Lipschitz continuous conditions of the cost mapping. Finally, we give some numerical results for the proposed algorithms and comparison with other known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Anh, P.N., Ansari, Q.H.: Auxiliary problem technique for hierarchical equilibrium problems. J. Optim. Theory Appl. 188(3), 882–912 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Anh, P.N., Le Thi, H.A.: Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces. Math. Meth. Appl. Sci. 43(6), 3260–3279 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Anh, P.N., Kim, J.K.: Outer approximation algorithms for pseudomonotone equilibrium problems. Comp. Math. Appl. 61, 2588–2595 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Aubin, J.P., Ekeland, I.: Applied nonlinear analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  6. Aubin, J.P., Frankowska, H.: Set-valued analysis. Boston-Basel-Berlin (1990)

  7. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    MATH  Google Scholar 

  8. Bazaraa, M.S., Shetty, C.M.: Foundations of Optimization. Springer-Verlag, Berlin, Heidelberg (1976)

    MATH  Google Scholar 

  9. Beck, A.: First-order methods in optimization, MOS-SIAM series on optimization. Chapter 6 (2017)

  10. Bertsekas, D.P., Gafni, E.M.: Projection methods for variational inequalities with application to the traffic assignment problem. Math. Programming Studies 17, 139–159 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Burachik, R.S., Lopes, J.O.: Outer approximation schemes for generalized semi-infinite variational inequality problems. Optim. 59(4), 601–617 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Burachik, R.S., Lopes, J.O., Svaiter, B.F.: An outer approximation method for the variational inequality problem. SIAM J. Control. Optim. 43, 2071–2088 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Cai, X., Gu, G., He, B.: On the \(O(1/t)\) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Cai, X., Shehu, Y., Iyiola, O.S.: Inertial Tseng’s extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. J. Ind. Manag. Optim. 18(4), 2873–2902 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Cegielski, A.: Application of quasi-nonexpansive operators to an iterative method for variational inequality. SIAM J. Optim. 25(4), 2165–2181 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Cegielski, A., Zalas, R.: Methods for variational inequality problem over the intersection of fixed point sets of quasi-nonexpansive operators. Numer. Funct. Anal. Optim. 34(3), 255–283 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Ceng., Ansari, Q.H., Yao, J-C. (2008): Mann-Type Steepest-Descent and Modified Hybrid Steepest-Descent Methods for Variational Inequalities in Banach Spaces. Num Funct Anal Optim, 29(9-10), 987–1033

  18. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth. Softw. 26(4–5), 827–845 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Cohen, G.: Auxiliary problem principle extended to variational inequalities. J. Optim. Theory Appl. 59, 325–333 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Combettes, P.L.: Strong convergence of block-iterative outer approximation methods for convex optimization. SIAM J. Control. Optim. 38, 538–565 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Ding, X.P., Lin, Y.C., Yao, J.C.: Three-step relaxed hybrid steepest-descent methods for variational inequalities. Appl. Math. Mech. 28, 1029–1036 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequality III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  23. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementary Problems. Springer, NewYork (2003)

    MATH  Google Scholar 

  24. Fukushima, M.: A relaxed projection method for variational inequalities. Math. Progr. 35(1), 58–70 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium problems: Nonsmooth optimization and variational inequality models. Kluwer, (2004)

  26. Gibali, A., Iyiola, O.S., Akinyemi, L., Shehu, Y.: Projected-reflected subgradient extragradient method and its real-world applications. Symmetry 13(3), 489 (2021)

    Google Scholar 

  27. Gibali, A., Reich, S., Zalas, R.: Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. 17, 775–811 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optim. 66, 417–437 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Progr. 48, 161–220 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  31. Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  32. Korpelevich, G.M.: Extragradientmethod for finding saddle points and other problems. Matecon 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  33. Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control. Optim. 47, 1499–1515 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Malitsky, Y.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25(1), 402–520 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    MathSciNet  MATH  Google Scholar 

  37. Santos, P., Scheimberg, S.: An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math. 30, 91–107 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Shehu, Y., Iyiola, O.S.: Strong convergence result for monotone variational inequalities. Numer. Algor. 76, 259–282 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Contr. Optim. 37(3), 765–776 (1999)

    MathSciNet  MATH  Google Scholar 

  40. Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Contr. Optim. 34(5), 1814–1830 (1996)

    MathSciNet  MATH  Google Scholar 

  41. Taji, K., Fukushima, M.: A new merit function and a successive quadratic programming algorithm for variational inequality problems. SIAM J. Optim. 6, 704–713 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control. Optim. 38, 431–446 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Xu, M.H.: Viscosity method for hierarchical fixed point approach to variational inequalities. Taiwanese J. Math. 14(2), 463–478 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. Stud. Comput. Math. 8, 473–504 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Yamada, I., Ogura, N.: Hybrid steepest descent method for the variational inequality problem over the the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Yao, Y., Noor, M.A.: Strong convergence of the modified hybrid steepest-descent methods for general variational inequalities. J. Appl. Math. Comput. 24(1–2), 179–190 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Zeng, L.C., Wong, N.C., Yao, J.C.: Convergence analysis of modified hybrid steepest-descent methods with variable parameters for variational inequalities. J. Optim. Theory Appl. 132(1), 51–69 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Zeng, L.C., Yao, J.C.: Two step relaxed hybrid steepest-descent methods for variational inequalities. J. Inequal. Appl. 2008, 598–632 (2008)

    Google Scholar 

Download references

Acknowledgements

We are very much grateful to the handling Editor and two anonymous referees for their helpful and constructive comments that helped us very much to improve the paper. This research is funded by Posts and Telecommunications Institute of Technology, Hanoi, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Ngoc Anh.

Additional information

Communicated by Aviv Gibali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, P.N. New Outer Proximal Methods for Solving Variational Inequality Problems. J Optim Theory Appl 198, 479–501 (2023). https://doi.org/10.1007/s10957-023-02202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02202-7

Keywords

Mathematics Subject Classification

Navigation