Skip to main content
Log in

Finite-Approximate Controllability of Impulsive Fractional Functional Evolution Equations of Order \(1<\alpha <2\)

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this manuscript, we study the finite-approximate controllability of impulsive fractional functional evolution equations of order \(1<\alpha <2\) in Hilbert spaces. We first discuss a useful characterization of the finite-approximate controllability for linear fractional evolution equations of order \(1<\alpha <2\) in terms of a resolvent-like operator. We also find a suitable control to obtain the approximate controllability of the linear system, which also ensures the finite-approximate controllability of the system. Next, we establish sufficient conditions for the finite-approximate controllability of the semilinear impulsive fractional evolution equations, whenever the corresponding linear system is approximately controllable. Moreover, we provide an example of fractional wave equation to illustrate the efficiency of the developed results. Finally, we discuss the finite-approximate controllability of semilinear fractional evolution equations of order \(1<\alpha <2\) with finite delay by using a variational method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems, 2nd edn. Birkhauser Verlag, New York (2011)

    MATH  Google Scholar 

  2. Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of fractional order non-instantaneous impulsive functional evolution equations with state-dependent delay in Banach spaces. IMA J. Math. Control Inform. 39(4), 1103–11142 (2022)

    MathSciNet  MATH  Google Scholar 

  3. Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of non-instantaneous impulsive fractional evolution equations of order \(1<\alpha <2\) with state-dependent delay in Banach spaces. Math. Methods Appl. Sci. 46(1), 531–559 (2023)

    MathSciNet  Google Scholar 

  4. Arora, S., Mohan, M.T., Dabas, J.: Existence and approximate controllability of non-autonomous functional impulsive evolution inclusions in Banach spaces. J. Differ. Equ. 307, 83–113 (2022)

    MathSciNet  MATH  Google Scholar 

  5. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York (1993)

    MATH  Google Scholar 

  6. Barbu, V.: Controllability and Stabilization of Parabolic Equations. Birkhäuser, New York (2018)

    MATH  Google Scholar 

  7. Bashirov, A.E., Mahmudov, N.I.: On concepts of controllability for deterministic and stochastic systems. SIAM J. Control. Optim. 37(6), 1808–1821 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)

    MATH  Google Scholar 

  9. Chen, P., Zhang, X., Li, Y.: A blowup alternative result for fractional non-autonomous evolution equation of Volterra type. Commun. Pure Appl. Anal. 17(5), 1975–1992 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Chen, P., Zhang, X., Li, Y.: Approximate controllability of non-autonomous evolution system with nonlocal conditions. J. Dyn. Control Syst. 26(1), 1–16 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Chen, P., Zhang, X., Li, Y.: Cauchy problem for fractional non-autonomous evolution equations. Banach J. Math. Anal. 14(2), 559–584 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Chen, P., Zhang, X., Li, Y.: Fractional non-autonomous evolution equation with nonlocal conditions. J. Pseudo-Differ. Oper. Appl. 10(4), 955–973 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, New York (1996)

    MATH  Google Scholar 

  14. Grudzka, A., Rykaczewski, K.: On approximate controllability of functional impulsive evolution inclusions in a Hilbert space. J. Optim. Theory Appl. 166, 414–439 (2015)

    MathSciNet  MATH  Google Scholar 

  15. He, J.W., Liang, Y., Ahmad, B., Zhou, Y.: Nonlocal fractional evolution inclusions of order \(\alpha \in (1,2)\). Mathematics 7(2), 1–17 (2019)

    Google Scholar 

  16. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141(5), 1641–1649 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

  18. Kemppainen, J., Siljander, J., Vergara, V., Zacher, R.: Decay estimates for time fractional and other non-local in time subdiffusion equations in \({\mathbb{R} }^d\). Math. Ann. 366(3–4), 941–979 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  20. Kisyński, J.: On cosine operator functions and one parameter group of operators. Studia Math. 44(1), 93–105 (1972)

    MathSciNet  MATH  Google Scholar 

  21. Klafter, J., Metzler, R.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Klamka, J.: Controllability and Minimum Energy Control. Springer, Berlin (2018)

    MATH  Google Scholar 

  23. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Google Scholar 

  24. Lions, J.L., Zuazua, E.: The cost of controlling unstable systems: time irreversible systems. Rev. Mat. UCM 10(2), 481–523 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, New York (1995)

    Google Scholar 

  26. Mahmudov, N.I.: Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control. Optim. 42(5), 1604–1622 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Mahmudov, N.I.: Finite-approximate controllability of evolution equations. Appl. Comput. Math. 16(2), 159–167 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Mahmudov, N.I.: Finite-approximate controllability of evolution systems via resolvent-like operators. https://arxiv.org/abs/1806.06930

  29. Mahmudov, N.I.: Finite-approximate controllability of fractional evolution equations: variational approach. Fract. Calc. Appl. Anal. 21(4), 919–936 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Mahmudov, N.I.: Variational approach to finite-approximate controllability of Sobolev-Type fractional systems. J. Optim. Theory Appl. 184(2), 671–686 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    MATH  Google Scholar 

  32. Nesić, D., Teel, A.R.: Input-to-state stability of networked control systems. Automatica 40(12), 2121–2128 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Pazy, A.: Semigroup of Linear Operators and Applications to Partial Equations. Springer, Berlin (1983)

    MATH  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  35. Raja, M.M., Vijayakumar, V.: New results concerning to approximate controllability of fractional integrodifferential evolution equations of order \(1<r<2\). Numer. Methods Partial Differ. Equ. 38(3), 509–524 (2022)

    Google Scholar 

  36. Raja, M.M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of fractional differential evolution equations of order \(1 < r < 2\) in Hilbert spaces. Chaos Solitons Fract. 141, 110310 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems. Acta Mech. 120(1–4), 109–125 (1997)

    MathSciNet  MATH  Google Scholar 

  38. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Philadelphia (1993)

    MATH  Google Scholar 

  39. Singh, S., Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evol. Equ. Control Theory 11(1), 67–93 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Travis, C.C., Webb, G.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Hungar. 32(1–2), 75–96 (1978)

    MathSciNet  MATH  Google Scholar 

  41. Travis, C.C., Webb, G.: Second order differential equations in Banach space. In: Lakshmikantham, V. (ed) Nonlinear Equations in Abstract Spaces, pp. 331–361. Academic Press (1978)

  42. Tavazoei, M.S., Haeri, M., Jafari, S., Bolouki, S., Siami, M.: Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans. Commun. Electron. 55(11), 4094–4101 (2008)

    Google Scholar 

  43. Triggiani, R.: Addendum: a note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control. Optim. 18(1), 98 (1980)

    MathSciNet  MATH  Google Scholar 

  44. Triggiani, R.: A note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control. Optim. 15(3), 407–411 (1977)

    MathSciNet  MATH  Google Scholar 

  45. Tian, Y., Wang, J.R., Zhou, Y.: Almost periodic solutions for a class of non-instantaneous impulsive differential equations. Quaest. Math. 42(7), 885–905 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Vijayakumar, V., Ravichandran, C., Nisar, K.S., Kucche, K.D.: New discussion on approximate controllability results for fractional Sobolev type Volterra–Fredholm integrodifferential systems of order \(1<r <2\). Numer. Methods Partial Differ. Equ. https://doi.org/10.1002/num.22772 (2021)

  47. Wang, J.R., Feĉkan, M.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 46(2), 915–933 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Wang, J.R., Feĉkan, M.: Non-instantaneous Impulsive Differential Equations. IOP Publishing, Berlin (2018)

    Google Scholar 

  49. Wang, J., Ibrahim, A.G., O’regan, D.: Finite-approximate controllability of Hilfer fractional semilinear differential equations. Miskolc Math. Notes 21(1), 489–507 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integrodifferential equations of mixed type and optimal controls. Optimization 55(1–2), 141–156 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Yang, T., Chua, L.O.: Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 7(3), 645–664 (1997)

    MathSciNet  MATH  Google Scholar 

  52. Yan, Z.: Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay. Int. J. Control 85(8), 1051–1062 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Zhou, Y., He, J.W.: New results on controllability of fractional evolution systems with order \(\alpha \in (1,2)\). Evol. Equ. Control Theory 10(3), 491–509 (2021)

    MathSciNet  MATH  Google Scholar 

  54. Zuazua, E.: Chapter 7—controllability and observability of partial differential equations: some results and open problems. In: Dafermos, C.M., Feireisl, E. (eds) Handbook of Differential Equations: Evolutionary Equations, Vol. 3, pp. 527–621. North-Holland (2007)

  55. Zuazua, E.: Controllability of Partial Differential Equations. 3rd cycle, Castro Urdiales (Espagne) (2006). https://cel.hal.science/cel-00392196

  56. Zuazua, E.: Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76(3), 570–594 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Arora would like first to thank the Council of Scientific & Industrial Research, New Delhi, Government of India (File No. 09/143(0931)/2013 EMR-I), for financial support to carry out his research work and also thank the Department of Mathematics, Indian Institute of Technology Roorkee (IIT Roorkee), for providing stimulating scientific environment and resources. M. T. Mohan would like to thank the Department of Science and Technology (DST), Govt. of India, for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (IFA17-MA110). J. Dabas would like to thank the Department of Atomic Energy (DAE), Mumbai, Government of India, project (File No-02011/12/2021 NBHM(R.P)/R &D II/7995).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydev Dabas.

Additional information

Communicated by Enrique Zuazua.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: A Variational Method

Appendix A: A Variational Method

In this section, we discuss the variational method (cf. [27,28,29,30], etc.) for finite-approximate controllability of a semilinear fractional evolution equation with finite delay. For easiness of demonstration, we are not considering impulses in the system. Let us consider the following fractional evolution equation with finite delay:

$$\begin{aligned} \begin{aligned} ^C\textrm{D}_{0,t}^{\alpha }x(t)&=\textrm{A}x(t)+\textrm{B}u(t)+f(t,x_t), \ t\in J =[0,T],\\ x(t)&=\phi (t),\ t\in [-c,0], \ c>0,\\ x'(0)&=\zeta , \end{aligned} \end{aligned}$$
(A.1)

where \(^C\textrm{D}_{0,t}^{\alpha }\) denotes the Caputo fractional derivative of order \(\alpha \in (1,2)\), the operators \(\textrm{A}:\mathrm {D(A)}\subset {\mathbb {H}}\rightarrow {\mathbb {H}}\) and \(\textrm{B}:{\mathbb {U}}\rightarrow {\mathbb {H}}\) are the same as defined in (1.1). The control function \(u\in \textrm{L}^{2}(J;{\mathbb {U}})\) and the given function \(f:J\times \textrm{C}(I_c;{\mathbb {H}})\rightarrow {\mathbb {H}}\), where \(I_c=[-c,0]\). For every \(t \in J,\ x_t \in \textrm{C}(I_c;{\mathbb {H}})\) and the function \(x_t(\cdot )\) is defined by \(x_t(s)= x(t + s),\ s\in I_c\).

Definition A.1

A function \(x\in \textrm{C}(J_c;{\mathbb {H}}),\) where \(J_c=[-c,T]\), is called a mild solution of (A.1), if \(x_0=\phi \) and

$$\begin{aligned} x(t)=\textrm{C}_{q}(t)\phi (0)+\textrm{T}_{q}(t)\zeta +\int _{0}^{t}(t-s)^{q-1}\textrm{S}_{q}(t-s)\left[ \textrm{B}u(s)+f(s,x_s)\right] \textrm{d}s,\ t\in J. \end{aligned}$$

Let us impose the following assumptions on the nonlinear term \(f(\cdot ,\cdot )\).

\(\textit{(A1)}\)

  1. (i)

    the mapping \(t\mapsto f(t, \psi ) \) is strongly measurable on J for each \( \psi \in \textrm{C}(I_c;{\mathbb {H}})\), and the function \(f(t,\cdot ): \textrm{C}(I_c;{\mathbb {H}})\rightarrow {\mathbb {H}}\) is continuous for a.e. \(t\in J\).

  2. (ii)

    For each positive integer r, there exists a constant \(\beta \in [0,q]\) and a function \(\varGamma _r\in \textrm{L}^{\frac{1}{\beta }}(J;\mathbb {R^{+}})\) such that

    $$\begin{aligned} \sup _{\left\| \psi \right\| _{\textrm{C}(I_c;{\mathbb {H}})}\le r} \left\| f(t, \psi )\right\| _{{\mathbb {H}}}\le \varGamma _{r}(t), \text{ for } \text{ a.e. } \ t \in J \ \text{ and } \ \psi \in \textrm{C}(I_c;{\mathbb {H}}), \end{aligned}$$

    with

    $$\begin{aligned} \liminf _{r \rightarrow \infty } \frac{\left\| \varGamma _r\right\| _{\textrm{L}^{\frac{1}{\beta }}(J;\mathbb {R^+})}}{r} = l< \infty . \end{aligned}$$

Here, we obtain the finite-approximate controllability of the semilinear system (A.1) by using the technique introduced in the works [27, 29, 30, 55], etc. For this, we consider the following functional:

$$\begin{aligned} {\mathcal {J}}_{\uplambda }(\varphi ,z)&=\frac{1}{2}\int _{0}^{T}(T-s)^{q-1}\left\| \textrm{B}^*\textrm{S}_q(T-s)^*\varphi \right\| ^2_{{\mathbb {U}}}\textrm{d}s+\frac{\uplambda }{2}\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\varphi \right\| ^2_{{\mathbb {H}}}-\langle \varphi , g(z)\rangle , \end{aligned}$$
(A.2)

for any \(\uplambda >0\), \(z\in \textrm{C}(J_c;{\mathbb {H}})\) and

$$\begin{aligned} g(z)=h-\textrm{C}_{q}(T)\phi (0)-\textrm{T}_{q}(T)\zeta -\int _{0}^{T} (T-s)^{q-1}\textrm{S}_{q}(T-s)f(s,z_s)\textrm{d}s, \end{aligned}$$

where \(h\in {\mathbb {H}}\).

Lemma A.2

The set \(\textrm{V}=\{g(z):z\in {\mathcal {B}}_r\}\) is relatively compact in \({\mathbb {H}}\), where \({\mathcal {B}}_r=\{y\in \textrm{C}(J_c;{\mathbb {H}}):\left\| y\right\| _{\textrm{C}(J_c;{\mathbb {H}})}\le r\}\).

Proof

The relative compactness of the set \(\textrm{V}\) is immediately follows by the facts that the operator \(\textrm{S}_{q}(t)\) is compact for \(t\ge 0\) and also the operator \((\textrm{G}f)(\cdot ) =\int _{0}^{\cdot }(\cdot -s)^{q-1}\textrm{S}_{q}(\cdot -s)f(s)\textrm{d}s\) is compact (see Lemma 3.4, [3]). \(\square \)

Lemma A.3

The functional \({\mathcal {J}}_{\uplambda }(\cdot ,\cdot )\) satisfies the following properties.

  1. (i)

    The mapping \(\varphi \mapsto {\mathcal {J}}_{\uplambda }(\varphi ,z)\) is strictly convex and Gâteaux differentiable.

  2. (ii)

    For any \(r>0\)

    $$\begin{aligned} \liminf _{\varphi \rightarrow \infty }\inf _{z\in {\mathcal {B}}_r}\frac{{\mathcal {J}}_{\uplambda }(\varphi ,z)}{\left\| \varphi \right\| _{{\mathbb {H}}}}\ge \uplambda . \end{aligned}$$
    (A.3)

Proof

(i) From the definition of \({\mathcal {J}}_{\uplambda }(\cdot ,\cdot )\), we see immediately that the mapping \(\varphi \mapsto {\mathcal {J}}_{\uplambda }(\varphi ,z)\) is strictly convex and Gâteaux differentiable.

(ii) In order to prove the estimate (A.3), let us consider two sequences \(\{\varphi ^m\}_{m=1}^\infty \subset {\mathbb {H}}\) and \(\{z^m\}_{m=1}^\infty \subset {\mathcal {B}}_r\) with \(\left\| \varphi ^m\right\| _{{\mathbb {H}}}\rightarrow \infty \) as \(m\rightarrow \infty \). From Lemma A.2, we know that the set \(\textrm{V}=\{g(z):z\in {\mathcal {B}}_r\}\) is relatively compact. So without loss generality, taking a subsequence \(g(z^m)\) (still denoted by \(g(z^m)\)), such that

$$\begin{aligned} g(z^m)\rightarrow g \ \text{ in } \ {\mathbb {H}}, \end{aligned}$$

for some \(g\in {\mathbb {H}}\). Next, we define

$$\begin{aligned} \psi ^m=\frac{\varphi ^m}{\left\| \varphi ^m\right\| _{{\mathbb {H}}}}, \end{aligned}$$

it is clear that \(\left\| \psi ^m\right\| _{{\mathbb {H}}}=1\). Hence, by applying the Banach–Alaoglu theorem, we can find a subsequence relabeled as \(\{\psi ^m\} _{m=1}^\infty \) such that

Using the compactness of the operator \( \textrm{S}_q(t)\) for \(t\ge 0\), we have the following convergence:

$$\begin{aligned} \textrm{B}^*\textrm{S}_q(T-\cdot )^*\psi ^m\rightarrow \textrm{B}^*\textrm{S}_q(T-\cdot )^*\psi \ \ \text{ in } \ \ \textrm{C}(J;{\mathbb {U}}). \end{aligned}$$
(A.4)

By the expression (A.2), it follows that

$$\begin{aligned} \frac{{\mathcal {J}}_{\uplambda }(\varphi ^m,z^m)}{\left\| \varphi ^m\right\| _{{\mathbb {H}}}}&=\frac{\left\| \varphi ^m\right\| _{{\mathbb {H}}}}{2}\int _{0}^{T}(T-s)^{q-1}\left\| \textrm{B}^*\textrm{S}_q(T-s)^*\psi ^m\right\| ^2_{{\mathbb {U}}}\textrm{d}s\\&\quad +\frac{\uplambda \left\| \varphi ^m\right\| _{{\mathbb {H}}}}{2}\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\psi ^m\right\| ^2_{{\mathbb {H}}}-\langle \psi ^m, g(z^m)\rangle . \end{aligned}$$

Case I: If either

$$\begin{aligned} \liminf _{m\rightarrow \infty }\int _{0}^{T}(T-s)^{q-1}\left\| \textrm{B}^*\textrm{S}_q(T-s)^*\psi ^m\right\| ^2_{{\mathbb {U}}}\textrm{d}s>0\ \text{ or } \ \lim _{m\rightarrow \infty }\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\psi ^m\right\| _{{\mathbb {H}}}>0. \end{aligned}$$

Then, it is immediate that

$$\begin{aligned} \frac{{\mathcal {J}}_{\uplambda }(\varphi ^m,z^m)}{\left\| \varphi ^m\right\| _{{\mathbb {H}}}}\rightarrow \infty \ \text{ as } \ m\rightarrow \infty , \end{aligned}$$

Case II:If

$$\begin{aligned} \liminf _{m\rightarrow \infty }\int _{0}^{T}(T\!-\!s)^{q-1}\left\| \textrm{B}^*\textrm{S}_q(T\!-\!s)^*\psi ^m\right\| ^2_{{\mathbb {U}}}\textrm{d}s>0\ \! \text{ or } \ \! \lim _{m\rightarrow \infty }\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\psi ^m\right\| _{{\mathbb {H}}}=0. \end{aligned}$$

In this case, it is again follows that

$$\begin{aligned} \frac{{\mathcal {J}}_{\uplambda }(\varphi ^m,z^m)}{\left\| \varphi ^m\right\| _{{\mathbb {H}}}}\rightarrow \infty \ \ \text{ as } \ \ m\rightarrow \infty . \end{aligned}$$

Case III: If \(\liminf \limits _{m\rightarrow \infty }\int _{0}^{T}(T-s)^{q-1}\left\| \textrm{B}^*\textrm{S}_q(T-s)^*\psi ^m\right\| ^2_{{\mathbb {U}}}\textrm{d}s=0\). Using the convergence (A.4) and the Fatou lemma, we obtain

$$\begin{aligned}&\int _{0}^{T}(T-s)^{q-1}\left\| \textrm{B}^*\textrm{S}_q(T-s)^*{\bar{\varphi }}\right\| ^2_{{\mathbb {U}}}\textrm{d}s\\&\le \liminf _{m\rightarrow \infty }\int _{0}^{T}(T-s)^{q-1}\left\| \textrm{B}^*\textrm{S}_q(T-s)^*\psi ^m\right\| ^2_{{\mathbb {U}}}\textrm{d}s=0. \end{aligned}$$

By using the above fact, Assumption 4.4 (H5) and Theorem 3.5, we have \( {\bar{\varphi }}=0\), which implies that

(A.5)

Since the space \({\mathcal {D}}\) is finite-dimensional and \(\pi _{{\mathcal {D}}}\) is compact, we get that

$$\begin{aligned} \pi _{{\mathcal {D}}}\varphi ^m\rightarrow 0\ \ \text{ as } \ \ m\rightarrow \infty , \end{aligned}$$

and therefore

$$\begin{aligned} \lim _{m\rightarrow \infty }\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\psi ^m\right\| _{{\mathbb {H}}}=1. \end{aligned}$$
(A.6)

From the convergence (A.5) and the estimate (A.6), further we obtain

$$\begin{aligned} \frac{{\mathcal {J}}_{\uplambda }(\varphi ^m,z^m)}{\left\| \varphi ^m\right\| _{{\mathbb {H}}}}\rightarrow \infty \ \ \text{ as } \ \ m\rightarrow \infty . \end{aligned}$$

Therefor, in all the cases we get the following:

$$\begin{aligned} \frac{{\mathcal {J}}_{\uplambda }(\varphi ^m,z^m)}{\left\| \varphi ^m\right\| _{{\mathbb {H}}}}\rightarrow \infty \ \ \text{ as } \ \ m\rightarrow \infty , \end{aligned}$$

which ensures that the inequality (A.3) follows. \(\square \)

The estimate (A.3) implies that the functional \({\mathcal {J}}_{\uplambda }(\cdot ,z)\) is coercive for all \(z\in {\mathcal {B}}_r\). Thus, \({\mathcal {J}}_{\uplambda }(\cdot ,z)\) has a minimizer. By the strict convexity of \({\mathcal {J}}_{\uplambda }(\cdot ,z)\), the minimum is unique which can be found as

$$\begin{aligned} {\mathcal {J}}_{\uplambda }'(\varphi ,z)=\Phi _0^T\varphi +\uplambda (\textrm{I}-\pi _{{\mathcal {D}}})\varphi -g(z)=0, \end{aligned}$$

so that

$$\begin{aligned} \varphi _{\min }=(\uplambda (\textrm{I}-\pi _{{\mathcal {D}}})+\Phi _0^T)^{-1}(g(z)). \end{aligned}$$

By using the above minimum, we construct the feedback control as

$$\begin{aligned} u^q_{\uplambda }(t)&=\textrm{B}^*\textrm{S}_q(T-t)^*\varphi _{\min }=\textrm{B}^*\textrm{S}_q(T-t)^*(\uplambda (\textrm{I}-\pi _{{\mathcal {D}}})+\Phi _0^T)^{-1}(g(z)). \end{aligned}$$

In order to prove the existence of a mild solution of the system (A.1), we define a set

$$\begin{aligned} {\mathcal {E}}:=\{x\in \textrm{C}(J;{\mathbb {H}}): x(0)=\phi (0)\}, \end{aligned}$$

with the norm \(\left\| \cdot \right\| _{\textrm{C}(J;{\mathbb {H}})}\). Next, for any \(\uplambda >0\), we define an operator \({\mathcal {P}}_\uplambda :{\mathcal {E}}\rightarrow {\mathcal {E}} \) as

$$\begin{aligned} ({\mathcal {P}}_{\uplambda }x)(t)&=\textrm{C}_{q}(t)\phi (0)+\textrm{T}_{q}(t)\zeta \nonumber \\&+\int _{0}^{t}(t-s)^{q-1}\textrm{S}_{q}(t-s)\left[ \textrm{B}u_{\uplambda }^{q}(s)+f(s,{\tilde{x}}_s)\right] \textrm{d}s, \ t\in J, \end{aligned}$$
(A.7)

with the control

$$\begin{aligned} u^q_{\uplambda }(t)&=\textrm{B}^*\textrm{S}_q(T-t)^*(\uplambda (\textrm{I}-\pi _{{\mathcal {D}}})+\Phi _0^T)^{-1}(g(x)), \end{aligned}$$

where

$$\begin{aligned} g(x)=h-\textrm{C}_{q}(T)\phi (0)-\textrm{T}_{q}(T)\zeta -\int _{0}^{T} (T-s)^{q-1}\textrm{S}_{q}(T-s)f(s,{\tilde{x}}_s)\textrm{d}s, \end{aligned}$$

and the function \({\tilde{x}}:[-c,T]\rightarrow {\mathbb {H}}\) such that \({\tilde{x}}(t)=\phi (t), \ t\in [-c,0], \ {\tilde{x}}(t)=x(t),\ t\in J\).

In view of the definition of \({\mathcal {P}}_{\uplambda }\), it is clear that the problem of existence of a mild solution for the system (A.1) is equivalent to the operator \({\mathcal {P}}_{\uplambda }\) has a fixed point. In the next theorem, we show that the operator \({\mathcal {P}}_{\uplambda }\) has a fixed point.

Theorem A.4

If Assumptions (H1) and (A1) hold true, then for arbitrary \(\uplambda >0\), the operator \({\mathcal {P}}_{\uplambda }\) given in (A.7) has a fixed point, provided

$$\begin{aligned} \frac{KlT^{2q-\beta }}{\Gamma (2q)\nu ^{1-\beta }}\left\{ 1+\left( \frac{KN}{\Gamma (2q)}\right) ^2\frac{T^{3q}}{3q\uplambda (1-\delta _{\uplambda })}\right\} <1, \end{aligned}$$

where \(\nu =\frac{2q-\beta }{1-\beta }\) and \(\delta _{\uplambda }=\left\| \uplambda (\uplambda \textrm{I}+\Phi _{0}^{T})^{-1}\pi _{{\mathcal {D}}}\right\| _{{\mathcal {L}}({\mathbb {H}})}<1\).

Proof

Proceeding similarly as in the proof of Theorem 4.2, we can obtain that the operator \({\mathcal {P}}_{\uplambda }\) defined in (A.7) satisfies the following properties:

  1. (i)

    There exists \(r>0\) such that \({\mathcal {P}}_{\uplambda }(\textrm{E}_r)\subset \textrm{E}_r\), where \(\textrm{E}_r=\{x\in {\mathcal {E}}: \left\| x\right\| _{\textrm{C}(J;{\mathbb {H}})}\le r\}\).

  2. (ii)

    \({\mathcal {P}}_{\uplambda }\) is continuous.

  3. (iii)

    \({\mathcal {P}}_{\uplambda }\) is compact.

In view of these three properties and an application of Schauder’s fixed point theorem, the existence of a fixed point of the operator \({\mathcal {P}}_{\uplambda }\) follows immediately. In other words, for any \(\uplambda >0\), there exists a function \(x^\uplambda \in \textrm{C}(J_c;{\mathbb {H}}),\) such that \(x^\uplambda _0=\phi \) and

$$\begin{aligned} x^\uplambda (t)= & {} \textrm{C}_{q}(t)\phi (0)+\textrm{T}_{q}(t)\zeta \\{} & {} \quad +\int _{0}^{t}(t-s)^{q-1}\textrm{S}_{q}(t-s)\left[ \textrm{B}u_\uplambda ^{q}(s)+f(s,x^\uplambda _s)\right] \textrm{d}s,\ t\in J, \end{aligned}$$

with the control

$$\begin{aligned} u^q_{\uplambda }(t)&=\textrm{B}^*\textrm{S}_q(T-t)^*(\uplambda (\textrm{I}-\pi _{{\mathcal {D}}})+\Phi _0^T)^{-1}(g(x^\uplambda )), \end{aligned}$$

where

$$\begin{aligned} g(x^\uplambda )=h-\textrm{C}_{q}(T)\phi (0)-\textrm{T}_{q}(T)\zeta -\int _{0}^{T} (T-s)^{q-1}\textrm{S}_{q}(T-s)f(s,x^\uplambda _s)\textrm{d}s, \end{aligned}$$
(A.8)

and the proof can be completed. \(\square \)

In order to investigate the finite-approximate controllability of the semilinear system (A.1), we assume the following:

(A2):

The function \( f: J \times \textrm{C}(I_c;{\mathbb {H}}) \rightarrow {\mathbb {H}} \) satisfies Assumption (A1)(i) and there exists a function \( \varGamma \in \textrm{L}^{\frac{1}{\beta }}(J;{\mathbb {R}}^+)\) with \(\beta \in [0,q]\) such that

$$\begin{aligned} \Vert f(t,\psi )\Vert _{{\mathbb {H}}}\le \varGamma (t),\ \text { for all }\ (t,\psi ) \in J \times \textrm{C}(I_c;{\mathbb {H}}). \end{aligned}$$

Theorem A.5

If Assumptions (H1), (H5), (A2) are satisfied, then the system (A.1) is finite-approximately controllable.

Proof

Since we know that the functional \({\mathcal {J}}_{\uplambda }(\varphi ,x^\uplambda )\) has a unique minima, say \(\hat{\varphi _{\uplambda }}\in {\mathbb {H}}\) of the form

$$\begin{aligned} \hat{\varphi _{\uplambda }}=(\uplambda (\textrm{I}-\pi _{{\mathcal {D}}})+\Phi _0^T)^{-1}(g(x^\uplambda )), \end{aligned}$$
(A.9)

where \(g(x^\uplambda )\) given in (A.8). For any given \(\varphi \in {\mathbb {H}}\) and \(\mu \in {\mathbb {R}},\) we have

$$\begin{aligned} {\mathcal {J}}_{\uplambda }(\hat{\varphi _{\uplambda }},x^\uplambda )\le {\mathcal {J}}_{\uplambda }(\hat{\varphi _{\uplambda }}+\mu \varphi ,x^\uplambda ), \end{aligned}$$

or in other words

$$\begin{aligned} \frac{\uplambda }{2}\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\varphi \right\| ^2_{{\mathbb {H}}}&\le \frac{\mu ^2}{2}\int _{0}^{T}(T-s)^{q-1}\left\| \textrm{B}^*\textrm{S}_q(T-s)^*\varphi \right\| ^2_{{\mathbb {U}}}\textrm{d}s\\&\quad +\mu \int _{0}^{T}(T-s)^{q-1}\langle \textrm{B}^*\textrm{S}_q(T-s)^*\hat{\varphi _{\uplambda }},\textrm{B}^*\textrm{S}_q(T-s)^*\varphi \rangle \textrm{d}s\\&\quad +\frac{\uplambda }{2}\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\hat{\varphi _{\uplambda }}+\mu \varphi \right\| ^2_{{\mathbb {H}}}-\mu \langle \varphi , g(x^\uplambda )\rangle . \end{aligned}$$

Dividing the above inequality by \(\mu >0\) and passing \(\mu \rightarrow 0^+\), we deduce that

$$\begin{aligned}&\langle \varphi , g(x^\uplambda )\rangle \\&\le \int _{0}^{T}(T-s)^{q-1}\langle \textrm{B}^*\textrm{S}_q(T-s)^*\hat{\varphi _{\uplambda }},\textrm{B}^*\textrm{S}_q(T-s)^*\varphi \rangle \textrm{d}s\\ {}&\quad +\frac{\uplambda }{2}\lim _{\mu \rightarrow 0}\frac{\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\hat{\varphi _{\uplambda }}+\mu \varphi \right\| ^2_{{\mathbb {H}}}-\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\varphi \right\| ^2_{{\mathbb {H}}}}{\mu }\\&\le \int _{0}^{T}(T-s)^{q-1}\langle \textrm{B}^*\textrm{S}_q(T-s)^*\hat{\varphi _{\uplambda }},\textrm{B}^*\textrm{S}_q(T-s)^*\varphi \rangle \textrm{d}s+\uplambda \langle (\textrm{I}-\pi _{{\mathcal {D}}})\hat{\varphi _{\uplambda }},(\textrm{I}-\pi _{{\mathcal {D}}})\varphi \rangle \\&\le \int _{0}^{T}(T-s)^{q-1}\langle \textrm{B}^*\textrm{S}_q(T-s)^*\hat{\varphi _{\uplambda }},\textrm{B}^*\textrm{S}_q(T-s)^*\varphi \rangle \textrm{d}s+\uplambda \left\| (\textrm{I}-\pi _{{\mathcal {D}}})\hat{\varphi _{\uplambda }}\right\| _{{\mathbb {H}}}\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\varphi \right\| _{{\mathbb {H}}}\\&\le \int _{0}^{T}(T-s)^{q-1}\langle \textrm{B}^*\textrm{S}_q(T-s)^*\hat{\varphi _{\uplambda }},\textrm{B}^*\textrm{S}_q(T-s)^*\varphi \rangle \textrm{d}s+\uplambda \left\| \hat{\varphi _{\uplambda }}\right\| _{{\mathbb {H}}}\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\varphi \right\| _{{\mathbb {H}}}. \end{aligned}$$

Repeating this argument with \(\mu <0,\) we finally obtain that

$$\begin{aligned} \left| \int _{0}^{T}\left\langle (T-s)^{q-1} \textrm{B}^*\textrm{S}_q(T-s)^*\hat{\varphi _{\uplambda }},\textrm{B}^*\textrm{S}_q(T-s)^*\varphi \right\rangle \textrm{d}s-\left\langle \varphi ,g(x^\uplambda )\right\rangle \right| \\ \le \uplambda \left\| \hat{\varphi _{\uplambda }}\right\| _{{\mathbb {H}}}\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\varphi \right\| _{{\mathbb {H}}}. \end{aligned}$$

Using the above estimate, we easily find

$$\begin{aligned} \left| \langle x^\uplambda (T)-h, \varphi \rangle \right|&\le \uplambda \left\| \hat{\varphi _{\uplambda }}\right\| _{{\mathbb {H}}}\left\| (\textrm{I}-\pi _{{\mathcal {D}}})\varphi \right\| _{{\mathbb {H}}}, \end{aligned}$$
(A.10)

holds for any \(\varphi \in {\mathbb {H}}\), which implies that

$$\begin{aligned} \left\| x^\uplambda (T)-h\right\| _{{\mathbb {H}}}\le \uplambda \left\| \hat{\varphi _{\uplambda }}\right\| _{{\mathbb {H}}}. \end{aligned}$$

Next, by using Assumption (A2), we obtain for \(0<\beta \le q\)

$$\begin{aligned} \int _{0}^{T}\left\| f(s,x^{\uplambda }_s)\right\| _{{\mathbb {H}}}^{2}\textrm{d}s&\le \int _{0}^{T}\varGamma ^2(s)\textrm{d} s\le \left( \int _{0}^{T}\varGamma ^{\frac{1}{\beta }}(s)\textrm{d}s\right) ^{2\beta }T^{1-2\beta }<+\infty . \end{aligned}$$

The case \(\beta =0\) can be obtained in a similar way. The above relation ensures that the set \( \{f(\cdot , x^{\uplambda }_{(\cdot )}): \uplambda >0\}\) in \( \textrm{L}^2([0,T]; {\mathbb {H}})\) is bounded. By applying the Banach–Alaoglu theorem, we can find a subsequence \( \{f(\cdot , x^{\uplambda _i}_{(\cdot )})\}_{i=1}^{\infty }\) such that

Using the above weak convergence together with the compactness of the operator \((\textrm{G}f)(\cdot ) =\int _{0}^{\cdot }(\cdot -s)^{q-1}\textrm{S}_{q}(\cdot -s)f(s)\textrm{d}s:\textrm{L}^2(J;{\mathbb {H}})\rightarrow \textrm{C}(J;{\mathbb {H}}) \) (see Lemma 3.4 [3]), we get

$$\begin{aligned} \left\| g(x^{\uplambda _i})-w\right\| _{{\mathbb {H}}}&\le \left\| \int _{0}^{T}(T-s)^{q-1}\textrm{S}_q(T-s)\left[ f(s,x^{\uplambda _i}_s)-f(s)\right] \textrm{d}s\right\| _{{\mathbb {H}}}\nonumber \\&\rightarrow 0\ \text{ as } \ \uplambda \rightarrow 0^+\ \ (i\rightarrow \infty ), \end{aligned}$$
(A.11)

where

$$\begin{aligned} w=h-\textrm{C}_{q}(T)\phi (0)-\textrm{T}_{q}(T)\zeta -\int _{0}^{T} (T-s)^{q-1}\textrm{S}_{q}(T-s)f(s)\textrm{d}s. \end{aligned}$$

Combining the estimates (A.9) and (A.10), we evaluate

$$\begin{aligned} \left\| x^{\uplambda _i}(T)-h\right\| _{{\mathbb {H}}}&\le \uplambda _i\left\| (\uplambda _i(\textrm{I}-\pi _{{\mathcal {D}}})+\Phi _0^T)^{-1}(g(x^{\uplambda _i}))\right\| _{{\mathbb {H}}}\nonumber \\&\le \left\| \uplambda _i(\uplambda _i(\textrm{I}-\pi _{{\mathcal {D}}})+\Phi _{0}^{T})^{-1}\right\| _{{\mathcal {L}}({\mathbb {H}})}\left\| g(x^{\uplambda _i})-w\right\| _{{\mathbb {H}}}\nonumber \\&+\left\| \uplambda _i(\uplambda _i(\textrm{I}-\pi _{{\mathcal {D}}})+\Phi _{0}^{T})^{-1}w\right\| _{{\mathbb {H}}}\nonumber \\&\le \frac{\uplambda _i}{\min (\uplambda _i,\varsigma )}\left\| g(x^{\uplambda _i})-w\right\| _{{\mathbb {H}}}+\left\| \uplambda _i(\uplambda _i(\textrm{I}-\pi _{{\mathcal {D}}})+\Phi _{0}^{T})^{-1}w\right\| _{{\mathbb {H}}}, \end{aligned}$$
(A.12)

where \(\varsigma =\min \{\langle \pi _{{\mathcal {D}}}\Phi _{0}^T\pi _{{\mathcal {D}}}\varphi ,\varphi \rangle : \left\| \pi _{{\mathcal {D}}}\varphi \right\| _{{\mathbb {H}}}=1\}>0\). Using the convergence (A.11), Assumption 4.4 (H5) and Theorem 3.5, we obtain

$$\begin{aligned} \left\| x^{\uplambda _i}(T)-h\right\| _{{\mathbb {H}}}\rightarrow 0\ \text{ as } \ \uplambda _i\rightarrow 0^+\ \ (i\rightarrow \infty ). \end{aligned}$$

By taking \(\varphi \in {\mathcal {D}}\) in the estimate (A.10), we get

$$\begin{aligned} \pi _{{\mathcal {D}}}x^{\uplambda _i}(T)=\pi _{{\mathcal {D}}}h. \end{aligned}$$

Thus, the system (A.1) is finite-approximately controllable. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Mohan, M.T. & Dabas, J. Finite-Approximate Controllability of Impulsive Fractional Functional Evolution Equations of Order \(1<\alpha <2\). J Optim Theory Appl 197, 855–890 (2023). https://doi.org/10.1007/s10957-023-02205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02205-4

Keywords

Mathematics Subject Classification

Navigation