Skip to main content

Advertisement

Log in

Fund Managers’ Competition for Investment Flows Based on Relative Performance

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

N mutual funds compete for fund flows based on relative performance over their average returns, by choosing between an idiosyncratic and a common risky investment opportunities. The unique constant equilibrium is derived in closed form, which implies that funds generally decrease the investments in their idiosyncratic risky assets under competition, in order to lower the risk of the relative performance. It pushes all funds to herd and hurts their after-fee performance. However, the sufficiently disadvantaged funds with poor idiosyncratic investment opportunities or highly risk averse managers may take excessive risk for a better chance of attracting new investments, and their performance may improve comparing to the case without competition and benefit the investors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Note that even in a setting of common information in this paper, different fund managers may specialize in different investment opportunities based on their skill and preference, and for simplicity, we summarize this specialization as one idiosyncratic \(S_i\) for each fund (see the same settings in [4, 40]). The analysis in the following can adapt to the case in which each manager has access to the same N risky assets as in [3], with only notational changes.

  2. Such convexity is the lowest in the USA in cross-country comparison and is declining over time [23, 33], due to the lower participation cost to the investors, which is even more of the case in recent years.

  3. Similarly in the rest of the paper, with positive integer n, \(v \in \mathbb {R}^n\) and \(D \in \mathbb {R}^{n\times n}\), let \(v_{-i} \in \mathbb {R}^{n-1}\) be the vector after removing v’s ith element, and \(D_{-i} \in \mathbb {R}^{(n-1) \times (n-1)} \) be the matrix after removing D’s ith row and ith column.

  4. According to the proof of Lemma 4.3, \((1-\rho _{1\,m}^2)(1-\rho _{2\,m}^2) \ge (\rho _{12}-\rho _{1\,m}\rho _{2\,m})^2\), and thus \(\kappa _1 >0\).

  5. Though it is a simplified setting in which the first \(N-1\) assets are perfectly correlated and the last one is perfectly negatively correlated with other assets, the manager’s portfolio choice problem is not trivial. For fund \(i \in \{1,\dots ,N-1\}\), the fund flow due to the last fund brings positive exposure to their own idiosyncratic risk. Yet to hedge such a risk manager i may not want to lower the risky investment by too much, because it may hurt the absolute return of the fund. Also, this setting does not create arbitrage opportunities, because each fund only has access to one investment opportunity.

  6. If \({\bar{\lambda }} = N-1\), then the industry average both with and without competition is riskless and Beta coefficients are not well defined.

References

  1. Aivaliotis, G., Palczewski, J.: Investment strategies and compensation of a mean-variance optimizing fund manager. Eur. J. Oper. Res. 234(2), 561–570 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Anthropelos, Michail, Geng, Tianran, Zariphopoulou, Thaleia: Competition in fund management and forward relative performance criteria. SIAM J. Financial Math. 13(4), 1271–1301 (2022)

    MathSciNet  MATH  Google Scholar 

  3. Basak, S., Makarov, D.: Strategic asset allocation in money management. J. Finance 69(1), 179–217 (2014)

    Google Scholar 

  4. Basak, S., Makarov, D.: Competition among portfolio managers and asset specialization. Available at SSRN 1563567 (2015)

  5. Basak, S., Pavlova, A., Shapiro, A.: Optimal asset allocation and risk shifting in money management. Rev. Financial Stud. 20(5), 1583–1621 (2007)

    Google Scholar 

  6. Bielagk, J., Lionnet, A., Dos Reis, G.: Equilibrium pricing under relative performance concerns. SIAM J. Financial Math. 8(1), 435–482 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Bodnaruk, A., Simonov, A.: Loss-averse preferences, performance, and career success of institutional investors. Rev. Financial Stud. 29(11), 3140–3176 (2016)

    Google Scholar 

  8. Boyle, P., Garlappi, L., Uppal, R., Wang, T.: Keynes meets markowitz: the trade-off between familiarity and diversification. Manage. Sci. 58(2), 253–272 (2012)

    Google Scholar 

  9. Brennan, M.J.: The optimal number of securities in a risky asset portfolio when there are fixed costs of transacting: theory and some empirical results. J. Financial Quant. Anal. 10(3), 483–496 (1975)

    Google Scholar 

  10. Brown, K.C., Van Harlow, W., Starks, L.T.: Of tournaments and temptations: an analysis of managerial incentives in the mutual fund industry. J. Finance 51(1), 85–110 (1996)

    Google Scholar 

  11. Brown, N.C., Wei, K.D., Wermers, R.: Analyst recommendations, mutual fund herding, and overreaction in stock prices. Manage. Sci. 60(1), 1–20 (2014)

    Google Scholar 

  12. Brown, S.J., Goetzmann, W.N.: Mutual fund styles. J. Financial Econ. 43(3), 373–399 (1997)

    Google Scholar 

  13. Browne, S.: Stochastic differential portfolio games. J. Appl. Prob. 37(1), 126–147 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Cai, F., Han, S., Li, D., Li, Y.: Institutional herding and its price impact: evidence from the corporate bond market. J. Financial Econ. 131(1), 139–167 (2019)

    Google Scholar 

  15. Cheng, T., Xing, S., Yao, W.: An examination of herding behaviour of the chinese mutual funds: a time-varying perspective. Pacific Basin Finance J. 74, 101820 (2022)

    Google Scholar 

  16. Chevalier, J., Ellison, G.: Risk taking by mutual funds as a response to incentives. J. Polit. Econ. 105(6), 1167–1200 (1997)

    Google Scholar 

  17. Choi, N., Sias, R.W.: Institutional industry herding. J. Financial Econ. 94(3), 469–491 (2009)

    Google Scholar 

  18. Dal Forno, A., Merlone, U.: Incentives and individual motivation in supervised work groups. Eur. J. Oper. Res. 207(2), 878–885 (2010)

    MathSciNet  MATH  Google Scholar 

  19. D’Arcangelis, A.M., Rotundo, G.: Herding in mutual funds: a complex network approach. J. Bus. Res. 129, 679–686 (2021)

    Google Scholar 

  20. Deng, C., Zeng, X., Zhu, H.: Non-zero-sum stochastic differential reinsurance and investment games with default risk. Eur. J. Oper. Res. 264(3), 1144–1158 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Dong, X., Feng, S., Sadka, R.: Liquidity risk and mutual fund performance. Manage. Sci. 65(3), 1020–1041 (2019)

    Google Scholar 

  22. Elliott, R.J., Siu, T.K.: On risk minimizing portfolios under a Markovian regime-switching black-scholes economy. Ann. Oper. Res. 176(1), 271–291 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Ferreira, M.A., Keswani, A., Miguel, A.F., Ramos, S.B.: The flow-performance relationship around the world. J. Bank. Finance 36(6), 1759–1780 (2012)

    Google Scholar 

  24. Frei, C., Dos Reis, G.: A financial market with interacting investors: Does an equilibrium exist? Math. Financial Econ. 4(3), 161–182 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Fung, W., Hsieh, D.A.: A primer on hedge funds. J. Emp. Finance 6(3), 309–331 (1999)

    Google Scholar 

  26. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, third edition Johns Hopkins University Press, Baltimore, MD (1996)

    Google Scholar 

  27. Graham, J.R.: Herding among investment newsletters: theory and evidence. J. Finance 54(1), 237–268 (1999)

    Google Scholar 

  28. Grinblatt, M., Titman, S., Wermers, R.: Momentum investment strategies, portfolio performance, and herding: a study of mutual fund behavior. Am. Econ. Rev. 85(5), 1088–1105 (1995)

    Google Scholar 

  29. Gruber, M.: Another puzzle: the growth in actively managed mutual funds. J. Finance 51(3), 783–810 (1996)

    Google Scholar 

  30. Chen, G., Guo, X., Zhang, C.: Analyst target price revisions and institutional herding. Int. Rev. Financial Anal. 82, 102189 (2022)

    Google Scholar 

  31. Han, J., Ma, G., Yam, S.CP.: Relative performance evaluation for dynamic contracts in a large competitive market. Eur. J. Oper. Res. (2022)

  32. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  33. Huang, J., Wei, K.D., Yan, H.: Participation costs and the sensitivity of fund flows to past performance. J. Finance 62(3), 1273–1311 (2007)

    Google Scholar 

  34. Hudson, Y., Yan, M., Zhang, D.: Herd behaviour and investor sentiment: evidence from uk mutual funds. Int. Rev. Financial Anal. 71, 101494 (2020)

    Google Scholar 

  35. Ippolito, R.A.: Consumer reaction to measures of poor quality: evidence from the mutual fund industry. J. Law Econ. 35(1), 45–70 (1992)

    Google Scholar 

  36. Jiang, H., Verardo, M.: Does herding behavior reveal skill? An analysis of mutual fund performance. J. Finance 73(5), 2229–2269 (2018)

    Google Scholar 

  37. Kempf, A., Ruenzi, S.: Tournaments in mutual-fund families. Rev. Financial Stud. 21(2), 1013–1036 (2008)

    Google Scholar 

  38. Kempf, A., Ruenzi, S., Thiele, T.: Employment risk, compensation incentives, and managerial risk taking: Evidence from the mutual fund industry. J. Financial Econ. 92(1), 92–108 (2009)

    Google Scholar 

  39. Lacker, D., Soret, A.: Many-player games of optimal consumption and investment under relative performance criteria. Math. Financial Econ. 14(2), 263–281 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Lacker, D., Zariphopoulou, T.: Mean field and n-agent games for optimal investment under relative performance criteria. Math. Finance 29(4), 1003–1038 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Lioui, A., Poncet, P.: Optimal benchmarking for active portfolio managers. Eur. J. Oper. Res. 226(2), 268–276 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Liu, H.: Solvency constraint, underdiversification, and idiosyncratic risks. J. Financial Quant. Anal. 49(2), 409–430 (2014)

    Google Scholar 

  43. Maug, E., Naik, N.: Herding and delegated portfolio management: the impact of relative performance evaluation on asset allocation. Quarter. J. Finance 1(02), 265–292 (2011)

    Google Scholar 

  44. Ou-Yang, H.: Optimal contracts in a continuous-time delegated portfolio management problem. Rev. Financial Stud. 16(1), 173–208 (2003)

    Google Scholar 

  45. Palomino, F.: Relative performance objectives in financial markets. J. Financial Intermed. 14(3), 351–375 (2005)

    Google Scholar 

  46. Patel, J., Zeckhauser, R., Hendricks, D.: The rationality struggle: illustrations from financial markets. Am. Econ. Rev. 81(2), 232–236 (1991)

    Google Scholar 

  47. Sato, Y.: Fund tournaments and asset bubbles. Rev. Finance 20(4), 1383–1426 (2016)

    MATH  Google Scholar 

  48. Scharfstein, D.S., Stein, J.C.: Herd behavior and investment. Am. Econ. Rev. 80(3), 465–479 (1990)

    Google Scholar 

  49. Siemsen, E., Balasubramanian, S., Roth, A.V.: Incentives that induce task-related effort, helping, and knowledge sharing in workgroups. Manage. Sci. 53(10), 1533–1550 (2007)

    Google Scholar 

  50. Sirri, E.R., Tufano, P.: Costly search and mutual fund flows. J. Finance 53(5), 1589–1622 (1998)

    Google Scholar 

  51. Taylor, J.: Risk-taking behavior in mutual fund tournaments. J. Econ. Behav. Org. 50(3), 373–383 (2003)

    Google Scholar 

  52. Uppal, R., Wang, T.: Model misspecification and underdiversification. J. Finance 58(6), 2465–2486 (2003)

    Google Scholar 

  53. Van Nieuwerburgh, S., Veldkamp, L.: Information immobility and the home bias puzzle. J. Finance 64(3), 1187–1215 (2009)

    Google Scholar 

  54. Wei, K.D., Wermers, R., Yao, T.: Uncommon value: the characteristics and investment performance of contrarian funds. Manage. Sci. 61(10), 2394–2414 (2015)

    Google Scholar 

Download references

Acknowledgements

G. Wang: Partially supported by National Science Foundation (DMS-2206282)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Mihai Sîrbu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We are very grateful for the insightful comments and suggestions from two anonymous reviewers, which help greatly improve the contribution of our work

Appendix

Appendix

The proof of Theorem 3.1

The first step is to find the optimal portfolio choice of the fund i, given the investment strategies \(\pi _{-i}\) and \(\theta _{-i}\) of other funds. Since we focus on constant equilibria, assume that \(\pi _{-i}\) and \(\theta _{-i}\) are constants. Then, with \({\tilde{X}}_{it} = \exp \left( -\left( r -{\tilde{\psi }}_i\right) t\right) X_{it}\), where \({\tilde{\psi }}_i = \left( 1+\frac{N-1}{N} \alpha _i\right) \psi _i - \frac{\alpha _i}{N} \sum _{j\ne i}^N\psi _j\), Fubini’s theorem implies that

$$\begin{aligned}&\mathbb {E}\left[ \int _0^T e^{-\beta _i t} \frac{(\psi _i X_{it})^{1-\gamma _i}}{1-\gamma _i} dt\right] =\int _0^T e^{\left( -\beta _i + r - {\tilde{\psi }}_i\right) t} \psi _i^{1-\gamma _i} \frac{\mathbb {E}\left[ {\tilde{X}}_{it}^{1-\gamma _i}\right] }{1-\gamma _i} dt. \end{aligned}$$

For any \((\pi _i,\theta _i)\in {\mathcal {A}}_i\times \varTheta \) (\(1\le i\le N\)), let \(\tilde{\pi }_{it} = \left( 1+\frac{N-1}{N}\alpha _i \right) \sigma _i \pi _{it}\), \(\tilde{\theta }_{it} = \left( 1+\frac{N-1}{N}\alpha _i \right) b \theta _{it}\), so that \(\pi = (\pi _1,\cdots ,\pi _N) = A_f{\tilde{\pi }}\) and \(\theta = A_m{\tilde{\theta }}\), where \(\tilde{\pi }\) and \(\tilde{\theta }\) are N-dimensional vectors with \((\tilde{\pi })_i = \tilde{\pi }_i\) and \((\tilde{\theta })_i = \tilde{\theta }_i\). Thus,

$$\begin{aligned} \begin{aligned} \frac{d\tilde{X}_{it}}{\tilde{X}_{it}} =\,&\tilde{\pi }_{it}(\lambda _i dt + dW_{it}) +\left( \tilde{\theta }_{it} -\sum _{j\ne i}^N c_{ij} \tilde{\theta }_{j}\right) ( \lambda _m dt + dB_t) \\&\qquad - \sum _{j\ne i}^N c_{ij}\left( \tilde{\pi }_{j}(\lambda _jdt + dW_{jt})\right) . \end{aligned} \end{aligned}$$

With \(\phi _{it}= \left[ \begin{array}{c} \tilde{\pi }_{it} \\ \tilde{\theta }_{it} - \sum \limits _{j\ne i}^N c_{ij}\tilde{\theta }_{j} \end{array}\right] , h_i = \left[ \begin{array}{c} \lambda _i \\ \lambda _m \end{array} \right] , F_{it} = \left[ \begin{array}{c} W_{it} \\ B_t \end{array}\right] , \lambda _{-i} = \left[ \begin{array}{cccc} \cdots&\lambda _{i-1}&\lambda _{i+1}&\cdots \end{array}\right] '\), and \(W_{-it} = \left[ \begin{array}{cccc} \cdots&W_{(i-1)t}&W_{(i+1)t}&\cdots \end{array}\right] '\), the dynamics of \({\tilde{X}}\) is

$$\begin{aligned} \frac{d\tilde{X}_{it} }{\tilde{X}_{it}} = \phi _{it}' (h_i dt + dF_{it}) -{\tilde{\pi }}_{-i}' C_i (\lambda _{-i} dt+ dW_{-it}), \end{aligned}$$

where \(C_i\) is an \((N-1)\)-dimensional matrix with diagonal entries \(c_{ij}\) for \(1\le j \le N\) and \(j\ne i\).

Lemma 4.2 shows that \(\hat{\phi }_i = \frac{1}{\gamma _i} w_i^{-1} h_i + w_i^{-1} w_{-i}C_i\pi _{-i}\) maximizes \(\frac{\mathbb {E}\left[ {\tilde{X}}_{it}^{1-\gamma _i}\right] }{1-\gamma _i}\). Since it is a constant strategy independent of t, it also maximizes the discounted expected utility from management fees for each manager i

$$\begin{aligned} \int _0^T e^{\left( -\beta _i + r - {\tilde{\psi }}_i\right) t} \psi _i^{1-\gamma _i} \frac{\mathbb {E}\left[ {\tilde{X}}_{it}^{1-\gamma _i}\right] }{1-\gamma _i} dt. \end{aligned}$$

\(\hat{\phi }_i = \frac{1}{\gamma _i} w_i^{-1} h_i + w_i^{-1} w_{-i}C_i{\tilde{\pi }}_{-i}\) for \(1\le i \le N\) are 2N equations of constants \({\tilde{\pi }} = ({\tilde{\pi }}_1,\cdots ,{\tilde{\pi }}_N)\) and \({\tilde{\theta }} = ({\tilde{\theta }}_1,\cdots ,{\tilde{\theta }}_N)\):

$$\begin{aligned} P_f \tilde{\pi } = \gamma ^{-1} \lambda _f, \quad P_m {\tilde{\theta }} = \gamma ^{-1} \eta _m + C {\tilde{\pi }}, \end{aligned}$$

of which the solution corresponds to the equilibrium strategies of the N funds. Since Lemma 4.3 shows that \(P_f\) and \(P_m\) are invertible, there exists a unique solution \({\tilde{\pi }} = P_f^{-1}\gamma ^{-1}\lambda _f\), \({\tilde{\theta }} = P_m^{-1}\left( \gamma ^{-1} \eta _m + C {\tilde{\pi }} \right) \). Therefore, \(\pi ^* = A_f P_f^{-1} \gamma ^{-1} \lambda _f\), and \(\theta ^* = A_m P_m^{-1} \left( \gamma ^{-1} \eta _m + C A_f^{-1} \pi ^* \right) . \) \(\square \)

Lemma 4.2

Given constant \(\pi _{-i}\) and \(\theta _{-i}\), \(\mathop {\textrm{arg}\,\textrm{max}}\limits _{\phi _i:(\pi _i,\theta _i)\in {\mathcal {A}}_i\times \varTheta } \frac{\mathbb {E}\left[ {\tilde{X}}_{it}^{1-\gamma _i}\right] }{1-\gamma _i} = \hat{\phi }_i = \frac{1}{\gamma _i} w_i^{-1} h_i + w_i^{-1} w_{-i}C_i\pi _{-i}\), for every \(0\le t\le T\), where \( w_i = \left[ \begin{array}{cc} 1 &{} \rho _{im} \\ \rho _{im} &{} 1 \end{array}\right] , w_{-i} = \left[ \begin{array}{c} (\rho _i)_{-i}^\prime \\ (\rho _m)_{-i}^\prime \end{array}\right] \), and \(\rho _i\) is the N-dimensional vector with \((\rho _i)_j = \rho _{ij}\).

Proof

We prove the case of \(0<\gamma _i <1\) and focus on \(\mathbb {E}\left[ {\tilde{X}}_{it}^{1-\gamma _i}\right] \) because \(1-\gamma _i >0\). The case of \(\gamma >1\) follows similarly. Define a stochastic process \(\xi \) such that \(\xi _0 = 1\) and

$$\begin{aligned} -\frac{d\xi _t}{\xi _t} = \left( M_i' w_{-i} + M_{-i}'\rho _{-i} -\lambda _{-i}'\right) C_i \pi _{-i} dt + M_i' dF_{it} + M_{-i}' dW_{-it}, \end{aligned}$$

where \(M_i\) and \(M_{-i}\) are two constant vectors to be determined later, which satisfy \(w_i M_i + w_{-i}M_{-i} = h_i\). Then,

$$\begin{aligned} \frac{d\xi _t \tilde{X}_{it}}{\xi _t \tilde{X}_{it}} =\,&-\left( M_i' w_i' +M_{-i}' w_{-i}' - h_i' \right) {\phi }_{it} dt +({\phi }_{it}'-M_i') dF_{it} \\&\qquad - ({\pi }_{-i}'{C}_i + M_{-i}') dW_{-it}\\ =\,&({\phi }_{it}'-M_i') dF_{it} - ({\pi }_{-i}'{C}_i + M_{-i}') dW_{-it}. \end{aligned}$$

Thus, \(\xi _t \hat{X}_{it}\) is a nonnegative local martingale and hence a supermartingale. Therefore (ignoring the positive \(1-\gamma _i\)), by Hölder’s inequality and noticing that \({\tilde{X}}_{i0} = X_{i0} = 1\),

$$\begin{aligned}&\mathbb {E}\left[ \tilde{X}_{it}^{1-\gamma _i}\right] \le \mathbb {E}\left[ \xi _t \tilde{X}_{it} \right] ^{1-\gamma _i} \mathbb {E}\left[ \xi _t^{\frac{\gamma _i-1}{\gamma _i}}\right] ^{\gamma _i} \le \mathbb {E}\left[ \xi _t^{\frac{\gamma _i-1}{\gamma _i}}\right] ^{\gamma _i}\\&\quad = \exp \left( (1-\gamma _i) \left( \left( M_i' w_{-i} + M_{-i}'\rho _{-i} - {\lambda }_{-i}'\right) {C}_i{\pi }_{-i} +\frac{1}{2\gamma _i}M_i' w_i M_i \right. \right. \\&\qquad + \left. \left. \frac{1}{2\gamma _i} M_{-i}' \rho _{-i} M_{-i} + \frac{1}{\gamma _i}M_i' w_{-i} M_{-i}\right) t \right) , \end{aligned}$$

which is an upper bound for \(\mathbb {E}\left[ \tilde{X}_{it}^{1-\gamma _i}\right] \) corresponding to any \((\pi _i,\theta _i)\in {\mathcal {A}}_i\times \varTheta \).

Next we search for the minimum among all such upper bounds corresponding to different choices of \(M_i\) and \(M_{-i}\), by considering the following constrained minimization problem:

$$\begin{aligned}&\min _{\{ M_i, M_{-i}\}} \frac{1}{2\gamma _i} M_i' w_i M_i + \frac{1}{2\gamma _i} M_{-i}' \rho _{-i}M_{-i} + \frac{1}{\gamma _i} M_i' w_{-i} M_{-i} + \\&\qquad \left( M_i' w_{-i} + M_{-i}' \rho _{-i}\right) C_i \pi _{-i} ,\\&\text { subject to: } w_i M_i + w_{-i}M_{-i} = h_i. \end{aligned}$$

The corresponding Lagrangian function, with Lagrange multiplier l, is

$$\begin{aligned} \begin{aligned} \mathcal {L} =\,&\frac{1}{2\gamma _i} \left( M_i' w_i M_i + M_{-i}' \rho _{-i}M_{-i} + 2M_i' w_{-i} M_{-i}\right) + \\&\quad \left( M_i' w_{-i} + M_{-i}' \rho _{-i}\right) C_i \pi _{-i} + l' \left( h_{i} - w_{i} M_{i} - w_{-i} M_{-i} \right) . \end{aligned} \end{aligned}$$

The first-order conditions for \(M_i\), \(M_{-i}\) and l are

$$\begin{aligned} M_i =\,&\gamma _i l - w_i^{-1} w_{-i} M_{-i} - \gamma _i w_i^{-1}w_{-i}C_i\pi _{-i}, \end{aligned}$$
(13)
$$\begin{aligned} 0=\,&\frac{1}{\gamma _i} \rho _{-i} M_{-i}+ \frac{1}{\gamma _i} w_{-i}'M_i + \rho _{-i}C_i \pi _{-i} - w_{-i}' l, \nonumber \\ 0=\,&h_i - w_i M_i - w_{-i} M_{-i}. \end{aligned}$$
(14)

Plugging (13) into (14) implies that

$$\begin{aligned} 0 = \left( \rho _{-i} -w_{-i}' w_{i}^{-1} w_{-i} \right) \left( M_{-i} + \gamma _i C_i \pi _{-i} \right) . \end{aligned}$$

Instead of discussing the uniqueness of solutions to the above equation, we pick out one of them \(M_{-i} = -\gamma _i C_i \pi _{-i}\), \(M_i = \gamma _i{\hat{\phi }}_i\), \(l= {\hat{\phi }}_i\), and verify that the candidate strategy \({\hat{\phi }}_i\) can achieve the upper bound corresponding to \(M_{-i}\) and \(M_i\), which verifies that \({\hat{\phi }}_i\) is indeed the maximizer of \(\mathbb {E}\left[ {\tilde{X}}_{it}^{1-\gamma _i}\right] \).

The upper bound corresponding to \(M_{-i} = -\gamma _i C_i \pi _{-i}\) and \(M_i = \gamma _i{\hat{\phi }}_i\) is

$$\begin{aligned}&\exp \left( (1-\gamma _i) \left( \left( M_i' w_{-i} + M_{-i}'\rho _{-i} - {\lambda }_{-i}'\right) {C}_i{\pi }_{-i} +\frac{1}{2\gamma _i}M_i' w_i M_i \right. \right. \nonumber \\&\qquad + \left. \left. \frac{1}{2\gamma _i} M_{-i}' \rho _{-i} M_{-i} +\frac{1}{\gamma _i}M_i' w_{-i} M_{-i}\right) t \right) \nonumber \\&\quad = \exp \left( (1-\gamma _i)\left( \left( \gamma _i\hat{\phi }_i' w_{-i} -\gamma _i\pi _{-i}'C_i\rho _{-i} - {\lambda }_{-i}'\right) {C}_i{\pi }_{-i} \right. \right. \nonumber \\&\qquad + \left. \left. \frac{\gamma _i}{2}\left( \hat{\phi }_i' w_i\hat{\phi }_i+\pi _{-i}'C_i \rho _{-i}C_i\pi _{-i} - 2\hat{\phi }_i' w_{-i} C_i\pi _{-i}\right) \right) t\right) \nonumber \\&\quad = \exp \left( \left( -(1-\gamma _i)\lambda _{-i}' C_i\pi _{-i} +\frac{(1-\gamma _i)\gamma _i}{2}\left( \hat{\phi }_i' w_i \hat{\phi }_i-\pi _{-i}'C_i\rho _{-i}C_i\pi _{-i}\right) \right) t\right) . \end{aligned}$$
(15)

On the other hand, for \({\tilde{X}}_i\) corresponding to \(\hat{\phi }_i\),

$$\begin{aligned} \tilde{X}_{it} =\,&\exp \left( \hat{\phi }_i' (h_i t + F_{it}) - \pi _{-i}'C_i (\lambda _{-i} t+ W_{-it}) \right. \\&\qquad + \left. \left( -\frac{1}{2} \hat{\phi }_i' w_i\hat{\phi }_i -\frac{1}{2} \pi _{-i}'C_i \rho _{-i}C_i\pi _{-i} + {\hat{\phi }}_i' w_{-i}C_i \pi _{-i}\right) t\right) . \end{aligned}$$

Thus,

$$\begin{aligned}&\mathbb {E}\left[ \tilde{X}_{it}^{1-\gamma _i}\right] \\&\quad =\exp \left( (1-\gamma _i) \left( \hat{\phi }_i' h_i - \pi _{-i}' C_i\lambda _{-i} -\frac{1}{2} \hat{\phi }_i' w_i \hat{\phi }_i -\frac{1}{2} \pi _{-i}' C_i\rho _{-i} C_i\pi _{-i} + \right. \right. \\&\qquad \left. \left. \hat{\phi }_i' w_{-i} C_i \pi _{-i} +\frac{(1-\gamma _i)}{2}\hat{\phi }_i'w_i \hat{\phi }_i' +\frac{(1-\gamma _i)}{2}\pi _{-i}'C_i \rho _{-i} C_i\pi _{-i} \right. \right. \\&\qquad \left. \left. - (1-\gamma _i) \hat{\phi }_i'w_{-i} C_i\pi _{-i} \right) t\right) \\&\quad =\exp \left( \left( -(1-\gamma _i)\pi _{-i}' C_i\lambda _{-i} +\frac{\gamma _i(1-\gamma _i)}{2} \left( \hat{\phi }_i' w_i \hat{\phi }_i' - \pi _{-i}' C_i \rho _{-i} C_i\pi _{-i}\right) \right) t\right) , \end{aligned}$$

which coincides with the upper bound in (15). \(\square \)

Lemma 4.3

\(P_f\) and \(P_m\) are invertible.

Proof

\(P_f\) and \(P_m\) can be rewritten as \(P_f = A_1P_{diag} P_1 P_{diag}A_2\), and \(P_m = P_{diag}^2A_1P_2A_2\), where \(A_1\), \(A_2\) and \(\textbf{P}_{diag}\) are \(N\times N\) diagonal matrices with \((A_1)_{ii} = \frac{1}{N+(N-1)\alpha _i}\), \((A_2)_{ii} = \alpha _i\) and \((P_{diag})_{ii} = \sqrt{1-\rho _{im}^2}\), and \(P_1\) and \(P_2\) are \(N\times N\) matrices with

$$\begin{aligned} (P_1)_{ij} = {\left\{ \begin{array}{ll} \frac{1}{c_{ii}}&{} \text { if } i = j,\\ -\frac{\rho _{ij}-\rho _{im}\rho _{jm}}{\sqrt{1-\rho _{im}^2}\sqrt{1-\rho _{jm}^2}} &{} \text { if } i \ne j, \end{array}\right. } \quad (P_{2})_{ij} = {\left\{ \begin{array}{ll} \frac{1}{c_{ii}} &{} \text { if } i = j,\\ -1 &{} \text { if } i \ne j. \end{array}\right. } \end{aligned}$$

On the other hand, for \(i\ne j\), Brownian motions \(W_i\) and \(W_j\) can be written as

$$\begin{aligned} W_{it} = \rho _{im} B_t + \sqrt{1-\rho _{im}^2} Z_{it}, \quad W_{jt} = \rho _{jm} B_t + \sqrt{1-\rho _{jm}^2} Z_{jt}, \end{aligned}$$

where \(Z_{i}, Z_{j}\) are Brownian motions independent of B. Suppose that \(\langle Z_i,Z_j\rangle _t = \rho ^z_{ij} t\), and then \(\rho _{ij} = \rho _{im}\rho _{jm} + \sqrt{(1-\rho _{im}^2)(1-\rho _{jm}^2)} \rho ^z_{ij}\), which implies that \(\frac{(\rho _{ij}-\rho _{im}\rho _{jm})^2}{(1-\rho _{im}^2)(1-\rho _{jm}^2)} = (\rho ^z_{ij})^2 \le 1\). Since \(c_{ii} = \frac{\alpha _i}{N+(N-1)\alpha _i} < \frac{1}{N-1}\), both \(P_1\) and \(P_2\) are strictly diagonally dominated matrices, and hence invertible. Therefore, \(P_f\) and \(P_m\) are invertible, because the diagonal matrices \(A_1\), \(A_2\) and \(P_{diag}\) are also invertible.\(\square \)

The proof of Proposition 3.1

  1. (i)

    The claim follows from the fact that \(\frac{\partial \pi _i^*}{\partial \lambda _i} = \frac{2(1-\rho _{jm}^2)}{(2+\alpha _i)\sigma _i \gamma _i \kappa _1}\) and \(\kappa _1 >0\).

  2. (ii)

    The claim follow from \(\frac{\partial \pi _i^*}{\partial \lambda _j} = \frac{2\alpha _i(\rho _{12}-\rho _{1\,m}\rho _{2\,m})}{(2+\alpha _i)(2+\alpha _j)\sigma _i \gamma _j \kappa _1}\).

  3. (iii)

    The claims are direct results of the following derivatives and the fact that \((1-\rho _{1\,m}^2)(1-\rho _{2\,m}^2) \ge (\rho _{12}-\rho _{1\,m}\rho _{2\,m})^2\) from the proof of Lemma 4.3.

    $$\begin{aligned} \frac{\partial \theta _i}{\partial \lambda _i} =\,&-\frac{2(1-\rho _{jm}^2)\rho _{im}}{(2+\alpha _i)b\kappa _2\gamma _i \kappa _1}\left[ \left( 1+\frac{\alpha _1\alpha _2}{(2+\alpha _1)(2+\alpha _2)}\right) (1-\rho _{1m}^2)(1-\rho _{2m}^2)\right. \\&- \left. \frac{2\alpha _1\alpha _2}{(2+\alpha _1)(2+\alpha _2)}(\rho _{12}-\rho _{1m}\rho _{2m})^2\right] , \\ \frac{\partial \theta _i}{\partial \lambda _j} =&- \frac{2\alpha _i(1-\rho _{im}^2)}{(2+\alpha _1)(2+\alpha _2)b \kappa _2 \gamma _j \kappa _1}\left[ \left( 1+\frac{\alpha _1\alpha _2}{(2+\alpha _1)(2+\alpha _2)}\right) \cdot \right. \\&\left. \left( 1-\rho _{1m}^2\right) \left( 1-\rho _{2m}^2\right) \rho _{jm}-\frac{2\alpha _1\alpha _2\rho _{jm}}{(2+\alpha _1)(2+\alpha _2)}\left( \rho _{12}-\rho _{1m}\rho _{2m}\right) ^2 \right. \\&- \left. \left( 1-\frac{\alpha _1\alpha _2}{(2+\alpha _1)(2+\alpha _2)}\right) (1-\rho _{jm}^2) (\rho _{jm}-\rho _{12}\rho _{im})\right] . \end{aligned}$$

\(\square \)

The proof of Proposition 3.2

The claims follow from the derivatives of \(\pi ^*_i\) with respect to \(\alpha _i\) and \(\alpha _j\).

$$\begin{aligned} \frac{\partial \pi _i^*}{\partial \alpha _i}=\,&\frac{2}{(2+\alpha _i)\sigma _i\kappa _1}\left( \frac{\rho _{12}}{2+\alpha _j}\left( 1-\frac{\alpha _i}{2+\alpha _i}\frac{1-\frac{\alpha _j}{2+\alpha _j}\rho _{12}^2}{\kappa _1}\right) \lambda _{j,\gamma _j}\right. \\&\qquad - \left. \frac{1-\frac{\alpha _j}{2+\alpha _j}\rho _{12}^2}{(2+\alpha _i)\kappa _1}\lambda _{i,\gamma _i}\right) \\ =\,&\frac{2}{(2+\alpha _i)^2(2+\alpha _j)\sigma _i\kappa _1^2}\left( 2\rho _{12}\lambda _{j,\gamma _j}-\left( 2 + (1-\rho _{12}^2)\alpha _j\right) \lambda _{i,\gamma _i}\right) ,\\ \frac{\partial \pi _i^*}{\partial \alpha _j}=\,&\frac{2}{(2+\alpha _i)\sigma _i\kappa _1}\left( \frac{2\alpha _i\rho _{12}^2}{(2+\alpha _i)(2+\alpha _j)^2\kappa _1}\lambda _{i,\gamma _i} \right. \\&\qquad - \left. \frac{\alpha _i\rho _{12}}{(2+\alpha _j)^2}\left( 1-\frac{2\alpha _i\rho _{12}^2}{(2+\alpha _i)(2+\alpha _j)\kappa _1}\right) \lambda _{j,\gamma _j}\right) \\ =\,&\frac{2\alpha _i\rho _{12}}{(2+\alpha _i)^2(2+\alpha _j)^2\sigma _i\kappa ^2_1}\left( 2\rho _{12}\lambda _{i,\gamma _i} - (2 + (1-\rho _{12}^2)\alpha _i)\lambda _{j,\gamma _j}\right) . \end{aligned}$$

\(\square \)

The proof of Proposition 3.3

Following (7) and (10), with \(\rho _{12}\in (-1,1)\) and \({\bar{\lambda }} \le 1\),

$$\begin{aligned} \frac{\pi _1^*}{\pi _1^M} =\,&\frac{2\left( 1 + \frac{\alpha }{2+\alpha } \rho _{12} {\bar{\lambda }}\right) }{(2+\alpha )\left( 1-\left( \frac{\alpha }{2+\alpha }\right) ^2\rho _{12}^2\right) } =\frac{2(2+\alpha )\left( 1 + \frac{\alpha }{2+\alpha } \rho _{12} {\bar{\lambda }}\right) }{4\alpha + \alpha ^2 (1-\rho _{12}^2)+4}\\ \le&\frac{4 + 4\alpha }{\alpha ^2(1-\rho _{12}^2)+4\alpha + 4}<1.\\ \eta _1^* - \eta _1^M =\,&\lambda _1 - \frac{\psi (2+\alpha )\left( 1-\left( \frac{\alpha }{2+\alpha }\right) ^2\rho _{12}^2\right) }{2\lambda _{1,\gamma _1}\left( 1+ \frac{\alpha }{2+\alpha } \rho _{12} {\bar{\lambda }}\right) } - \left( \lambda _1 - \frac{\psi }{\lambda _{1,\gamma _1}} \right) \\ =\,&-\frac{\alpha \psi \left( \left( 2+ \alpha (1-\rho _{12}^2)\right) - 2\rho _{12} {\bar{\lambda }} \right) }{2(2+\alpha )\lambda _{1,\gamma _1}\left( 1+ \frac{\alpha }{2+\alpha } \rho _{12} {\bar{\lambda }}\right) }\\ <&-\frac{\alpha \psi \left( 2- 2 {\bar{\lambda }} \right) }{2(2+\alpha )\lambda _{1,\gamma _1}\left( 1+ \frac{\alpha }{2+\alpha } \rho _{12} {\bar{\lambda }}\right) } \le 0. \end{aligned}$$

On the other hand,

$$\begin{aligned} \frac{\pi _2^*}{\pi _2^M} - 1 =\,&\frac{2\left( \frac{\alpha }{2+\alpha } \rho _{12} + {\bar{\lambda }}\right) }{{\bar{\lambda }}(2+\alpha )\left( 1-\left( \frac{\alpha }{2+\alpha }\right) ^2\rho _{12}^2\right) } -1= \frac{\frac{2\alpha \rho _{12}}{2+\alpha }+ \alpha \left( \frac{\alpha \rho _{12}^2}{2+\alpha }-1\right) {\bar{\lambda }}}{{\bar{\lambda }}(2+\alpha )\left( 1-\left( \frac{\alpha }{2+\alpha }\right) ^2\rho _{12}^2\right) }. \end{aligned}$$

Thus, \(\pi ^*_2 \le \pi ^M_2\) is equivalent to \(\frac{2\alpha \rho _{12}}{2+\alpha }+ \alpha \left( \frac{\alpha \rho _{12}^2}{2+\alpha }-1\right) {\bar{\lambda }}\le 0\), which, since \(\frac{\alpha \rho _{12}^2}{2+\alpha } <1\), always holds for \(\rho _{12}<0\), and is equivalent to \({\bar{\lambda }} \ge \frac{2\rho _{12}}{2+\alpha (1-\rho _{12}^2)}\) if \(\rho _{12} \ge 0\). Finally,

$$\begin{aligned} \eta _2^* - \eta _2^M =\,&-\frac{ \psi \alpha \left( \left( 2+ \alpha (1-\rho _{12}^2)\right) {\bar{\lambda }} - 2\rho _{12} \right) }{2(2+\alpha )\lambda _{2,\gamma _2}\left( {\bar{\lambda }}+ \frac{\alpha \rho _{12}}{2+\alpha }\right) }. \end{aligned}$$

Thus, if \(\rho _{12} \ge 0\), \({\bar{\lambda }} + \frac{\alpha \rho _{12}}{2+\alpha }>0\), and \(\eta _2^* \le \eta _2^M\) if and only if \(\left( 2+ \alpha (1-\rho _{12}^2)\right) {\bar{\lambda }} - 2\rho _{12}\ge 0\), or equivalently \({\bar{\lambda }} \ge \frac{2\rho _{12}}{2+ \alpha (1-\rho _{12}^2)}\). If \(\rho _{12} < 0\), \( \left( 2+ \alpha (1-\rho _{12}^2)\right) {\bar{\lambda }} - 2\rho _{12} > 0\), and \(\eta _2^* \le \eta _2^M\) if and only if \({\bar{\lambda }} \ge -\frac{\alpha \rho _{12}}{2+\alpha }\). \(\square \)

The proof of Proposition 3.4

Following (8) and (9),

$$\begin{aligned} \text {Beta}_1^* -1 =\,&\frac{\left( 1-\left( \frac{\alpha }{2+\alpha }\right) ^2\rho _{12}^2\right) (1-\bar{\lambda }^2)}{ K_1^*} \ge 0,\\ K_1^*=\,&\left( 1+\frac{\alpha }{2+\alpha }\rho _{12} \bar{\lambda }\right) ^2+2\rho _{12} \left( 1+\frac{\alpha }{2+\alpha }\rho _{12} \bar{\lambda }\right) \left( \frac{\alpha }{2+\alpha } \rho _{12} \bar{\lambda }\right) \\&\qquad + \left( \frac{\alpha }{2+\alpha } \rho _{12} + \bar{\lambda }\right) ^2,\\ \text {Beta}_1^M -1 =\,&\frac{ 1- \bar{\lambda }^2}{1 + 2\rho _{12} \bar{\lambda }^2 + \bar{\lambda }^2} \ge 0 . \end{aligned}$$

Therefore, if \({\bar{\lambda }}=1\), \(\textrm{Beta}^*_1 = \textrm{Beta}^M_1 = 1\). Otherwise, since \(\bar{\lambda }<1\), the sign of \(|\text {Beta}_1^* - 1| -|\text {Beta}_1^M -1| = \textrm{Beta}^*_1 - \textrm{Beta}^M_1\) is the same as that of

$$\begin{aligned}&\left( 1-\left( \frac{\alpha }{2+\alpha }\right) ^2 \rho _{12}^2\right) \left( 1 + 2\rho _{12} \bar{\lambda } + \bar{\lambda }^2\right) -\left( 1+\frac{\alpha }{2+\alpha }\rho _{12} \bar{\lambda }\right) ^2\nonumber \\&\quad - 2\rho _{12} \left( 1+\frac{\alpha }{2+\alpha }\rho _{12} \bar{\lambda }\right) \left( \frac{\alpha }{2+\alpha } \rho _{12} + \bar{\lambda }\right) - \left( \frac{\alpha }{2+\alpha } \rho _{12} + \bar{\lambda }\right) ^2 \nonumber \\&\quad = - \frac{4\alpha (1+\alpha )}{(2+\alpha )^2}\rho ^2_{12}\left( 1 + \left( \frac{2+\alpha }{1+\alpha }\frac{1}{\rho _{12}}+\frac{\alpha }{1+\alpha } \rho _{12}\right) \bar{\lambda } + \bar{\lambda }^2\right) . \end{aligned}$$
(16)

If \(\rho _{12} \ge 0\), \(1 + \left( \frac{2+\alpha }{1+\alpha }\frac{1}{\rho _{12}}+\frac{\alpha }{1+\alpha } \rho _{12}\right) \bar{\lambda } + \bar{\lambda }^2 \ge 0\), and hence \(|\textrm{Beta}_1^* - 1| -|\textrm{Beta}_1^M -1| \le 0\). If \(\rho _{12} < 0\), \(|\text {Beta}_1^* -1| - |\textrm{Beta}_1^M - 1| \le 0\) is equivalent to

$$\begin{aligned} 1 + \left( \frac{2+\alpha }{1+\alpha }\frac{1}{\rho _{12}}+\frac{\alpha }{1+\alpha } \rho _{12}\right) \bar{\lambda } + \bar{\lambda }^2 \ge 0. \end{aligned}$$
(17)

Since \(\frac{\alpha }{1+\alpha } \rho _{12} + \frac{2+\alpha }{1+\alpha } \frac{1}{\rho _{12}}\) is negative and is decreasing in \(\rho _{12} \in [-1,0)\), the maximum value at \(\rho _{12} = -1\) is \(-2\), and \(\varDelta \ge 0\). Since \(\lambda \le 1\), the two roots of the left hand side of (17) are

$$\begin{aligned} \frac{-\left( \frac{\alpha }{1+\alpha } \rho _{12} + \frac{2+\alpha }{1+\alpha } \frac{1}{\rho _{12}} \right) + \sqrt{\varDelta }}{2} \ge 1 \text { and } 0\le \frac{-\left( \frac{\alpha }{1+\alpha } \rho _{12} + \frac{2+\alpha }{1+\alpha } \frac{1}{\rho _{12}} \right) - \sqrt{\varDelta }}{2}. \end{aligned}$$

Thus, \(|\text {Beta}_1^* - 1|-|\text {Beta}_1^M -1| \le 0\) if \(\bar{\lambda } \le \frac{-\left( \frac{\alpha }{1+\alpha } \rho _{12} + \frac{2+\alpha }{1+\alpha } \frac{1}{\rho _{12}} \right) - \sqrt{\varDelta }}{2}\), and otherwise the inequality is reversed.

On the other hand, algebraic calculations show that \(\textrm{Beta}_2^*-1 = - \left( \textrm{Beta}^*_1 -1\right) \le 0\) and \(\textrm{Beta}_2^M-1 = -\left( \textrm{Beta}^M_1-1 \right) \le 0\). Therefore, the sign of \(|\text {Beta}_2^* - 1| -|\text {Beta}_2^M -1| = -\textrm{Beta}^*_2 + \textrm{Beta}^M_2\) is the same as (16), and equivalent conditions for Fund 1 still hold. \(\square \)

The proof of Proposition 3.5

Let \(\tilde{X}_{it} = \exp \left( -\left( r- {\tilde{\psi }}_i \right) t\right) X_{it}\). Then, with \(\zeta _{it} = \frac{N+(N-1)\alpha _i}{N} \theta _{it} -\frac{\alpha _i}{N} \sum _{j\ne i}^N \theta _{jt}\), \({\tilde{X}}_i\) follows

$$\begin{aligned} \frac{d\tilde{X}_{it}}{\tilde{X}_{it}} = \zeta _{it} (adt+bdB_t), \quad \tilde{X}_{i0} = X_{i0} =1. \end{aligned}$$

We first calculate the optimal \(\zeta _i\) (or equivalently the optimal \(\theta _i\)) given \(\theta _j\)’s (\(j\ne i\)) of other funds. With \(d\xi _t /\xi _t = - \lambda _m dB_t\) and \(\xi _0 =1\), \(d(\xi _t\tilde{X}_{it})= \xi _t \tilde{X}_{it} \left( \zeta _{it} b - \lambda _m \right) dB_t\), which is a nonnegative local martingale, and thus a supermartingale. Then, for \(0<\gamma _i <1\) (the case of \(\gamma _i >1\) follows similarly), by Hölder’s inequality, for any \(\theta = (\theta _1,\dots ,\theta _N) \in \varTheta ^N\),

$$\begin{aligned}&\mathbb {E}\left[ \frac{\tilde{X}_{it}^{1-\gamma _i} }{1-\gamma _i}\right] = \frac{\mathbb {E}\left[ \left( \xi _t\tilde{X}_{it}\right) ^{1-\gamma _i} \xi _t^{\gamma _i-1} \right] }{1-\gamma _i} \\&\quad \le \frac{\mathbb {E}\left[ \xi _t \hat{X}_{it} \right] ^{1-\gamma _i} \mathbb {E}\left[ \xi _t^{-\frac{1-\gamma _i}{\gamma _i}}\right] ^{\gamma _i} }{1-\gamma _i} \le \frac{\exp \left( \frac{1-\gamma _i}{2\gamma _i} \lambda _m^2 t \right) }{1-\gamma _i}, \end{aligned}$$

which gives an upper bound of \(\mathbb {E}\left[ \frac{\tilde{X}_{it}^{1-\gamma _i} }{1-\gamma _i}\right] \). On the other hand, with \(\theta _{it} = \frac{N\left( \frac{\lambda _m}{\gamma _i b} + \frac{\alpha _i}{N}\sum \limits _{j\ne 1}^N \theta _{jt}\right) }{N+(N-1)\alpha _i}\), and thus \(\zeta _{it} = \frac{\lambda _m}{\gamma _i b}\), \(\mathbb {E}\left[ \frac{1}{1-\gamma _i} \tilde{X}_{it}^{1-\gamma _i} \right] = \frac{\exp \left( \frac{1-\gamma _i}{2\gamma _i} \lambda _m^2 t \right) }{1-\gamma _i},\) which indicates that \(\zeta _i\) is the maximizer of \(\mathbb {E}\left[ \frac{\tilde{X}_{it}^{1-\gamma _i} }{1-\gamma _i}\right] \). Since \(\zeta _{it} = \frac{\lambda _m}{\gamma _i b}\) is a constant strategy, independent of t, it also maximizes manager i’s expected utility

$$\begin{aligned} \int _0^T e^{\left( -\beta _i + r - {\tilde{\psi }}_i\right) t} \psi _i^{1-\gamma _i} \frac{\mathbb {E}\left[ {\tilde{X}}_{it}^{1-\gamma _i}\right] }{1-\gamma _i} dt, \end{aligned}$$

and the optimal strategy given \(\theta _j\)’s (\(j\ne i\)) is \(\theta _{it} = \frac{N\left( \frac{\lambda _m}{\gamma _ib} + \frac{\alpha _i}{N}\sum \limits _{j\ne i}^N \theta _{jt}\right) }{N+(N-1)\alpha _i}\).

To find the equilibrium, it suffices to solve the system of N equations, each representing the optimal strategy given the portfolio of other funds: \(P_I \theta _t = \frac{\lambda _m}{b}\gamma ^{-1}e\), where \(\theta _t= (\theta _{1t},\cdots ,\theta _{Nt})'\), e is the N-dimensional vector with all entries equal to 1, \(P_I\) the \(N\times N\) matrix with \((P_I)_{i,j} = {\left\{ \begin{array}{ll} \frac{N+(N-1)\alpha _i}{N} &{} \text { if } i =j \\ -\frac{\alpha _i}{N} &{} \text { if } i \ne j, \end{array}\right. }\) and \(\gamma \) is defined in Theorem 3.1. Since \(P_I\) is strictly diagonally dominated and thus invertible, there exists a unique solution \(\theta ^* = \frac{\lambda _m}{b}P_I^{-1} \gamma ^{-1}e\) for every \(0\le t\le T\). Furthermore, since \(P_I = -\frac{1}{N} A_2 (D + ee')\), where \(A_2\) is the diagonal matrix defined in the proof of Lemma 4.3, D is an \(N\times N\) diagonal matrix with \((D)_{ii} = -\frac{1}{c_{ii}}-1\), \(1\le i\le N\), by Sherman–Morrison–Woodbury formula (See equation 2.1.4 in [26]),

$$\begin{aligned} (P_I^{-1})_{i,j} = \left\{ \begin{array}{ll} \frac{1}{1+\alpha _i} + \frac{1+\bar{\alpha }}{N}\frac{\alpha _i}{(1+\alpha _i)^2}&{} \text {, } i = j\\ \frac{1+\bar{\alpha }}{N}\frac{\alpha _i}{(1+\alpha _i)(1+\alpha _j)}&{} \text {, } i \ne j \end{array} \right. , \end{aligned}$$

and this solution reduces to \(\theta _i^* = \frac{\lambda _m}{b} \left( \frac{1}{1+\alpha _i}\frac{1}{\gamma _i} + \frac{\alpha _i}{1+\alpha _i} \frac{1}{\bar{\gamma }}\right) \) for \(1\le i \le N\). \(\square \)

The proof of Proposition 3.6

  1. (i)

    Both \(\theta ^*_i\) and \(\theta ^M_i\) are proportion to \(\frac{\lambda _m}{b}\), while the coefficient for \(\theta ^M_i\) is \(\frac{1}{\gamma _i}\) and that for \(\theta ^*_i\) is a convex combination between \(\frac{1}{\gamma _i}\) and \(\frac{1}{{\bar{\gamma }}}\). The claim follows by the comparing the two coefficients.

  2. (ii)

    Since \(\frac{1}{N}\sum \limits _{i=1}^{N} \left( \frac{1}{1+\alpha _i}\frac{1}{\gamma _i} + \frac{\alpha _i}{1+\alpha _i}\frac{1}{{\bar{\gamma }}}\right) = \frac{1}{{\bar{\gamma }}}\), \({\bar{\theta }}^* = \frac{\lambda _m}{b{\bar{\gamma }}}\), and

    $$\begin{aligned} \bar{\theta }^* - \bar{\theta }^M =\,&\frac{\lambda _m}{b} \left( \frac{1}{\bar{\gamma }} - \frac{1}{N} \sum _{i = 1}^N \frac{1}{\gamma _i}\right) = \frac{\lambda _m}{b} \left( \frac{1+{\bar{\alpha }}}{N} \sum _{i = 1}^N \frac{1}{(1+\alpha _i)\gamma _i}- \frac{1}{N} \sum _{i = 1}^N \frac{1}{\gamma _i}\right) \\ =\,&\frac{\lambda _m}{b} \frac{1}{N} \sum _{i = 1}^N \left( \frac{1+\bar{\alpha }}{1+\alpha _i}-1 \right) \frac{1}{\gamma _i}. \end{aligned}$$

    Since \((\gamma _i-\gamma _j)(\alpha _i-\alpha _j) \ge 0\) for every pair of i and j, \(\left( \frac{1+\bar{\alpha }}{1+\alpha _i}-1 \right) \)’s and \(\frac{1}{\gamma _i}\)’s are similarly ordered, and from Tchebychef’s inequality [32, 2.17.1], the above is greater than or equal to

    $$\begin{aligned} \frac{\lambda _m}{b} \frac{1}{N} \sum _{i = 1}^N \left( \frac{1+\bar{\alpha }}{1+\alpha _i}-1 \right) \frac{1}{N} \sum _{i = 1}^N\frac{1}{\gamma _i} =0, \end{aligned}$$

    and the inequality is reversed if \((\gamma _i-\gamma _j)(\alpha _i-\alpha _j) \le 0\) for every pair of i and j.

  3. (iii)

    \(\bar{\theta }^* = \bar{\theta }^M\) follows from (ii). Furthermore, since \(\frac{1}{{\bar{\gamma }}} = \frac{1}{N}\sum \limits _{i=1}^N\frac{1}{\gamma _i}\),

    $$\begin{aligned}&\theta _i^* - \bar{\theta }^* = \frac{\lambda _m}{b}\left( \frac{1}{1+\alpha } \frac{1}{\gamma _i} +\sum _{j=1}^N\left( \frac{\alpha }{N(1+\alpha )} \frac{1}{\gamma _j} \right) - \frac{1}{N}\sum _{j = 1} \frac{1}{\gamma _j} \right) \\&\quad = \frac{\lambda _m}{b}\left( \frac{1}{1+\alpha } \frac{1}{\gamma _i} - \frac{1}{1+\alpha } \frac{1}{N} \sum _{j = 1}^N \frac{1}{\gamma _j}\right) \\&\quad = \frac{1}{1+\alpha }\frac{\lambda _m}{b} \left( \frac{1}{\gamma _i} -\frac{1}{N} \sum _{j = 1}^N \frac{1}{\gamma _j}\right) = \frac{1}{1+\alpha } \left( \theta ^M_i - \bar{\theta }^M\right) . \end{aligned}$$

\(\square \)

The proof of Proposition 3.7

(i) and (ii) follow the same calculation as for Theorem 3.1. For (iii), notice that \(\pi ^{*\alpha }_N - \pi ^{*0}_N = (k_\rho ({\tilde{\lambda }} +\lambda _{N,\gamma _N}) - \lambda _{N,\gamma _N} )/\sigma _1\). Thus, the comparison between \(\pi ^{*0}\) and \(\pi ^{*\alpha }\) is reduced to

$$\begin{aligned}&k_\rho ({\tilde{\lambda }} +\lambda _{N,\gamma _N}) - \lambda _{N,\gamma _N} \\&\quad =k_\rho \left( \sum \limits _{j = 1}^N \frac{\alpha \rho }{N+(N-1)(1-\rho )\alpha }\lambda _{j,\gamma _j} +\left( 1-\frac{N+(N-1+\rho )\alpha }{N}\right) \lambda _{N,\gamma _N} \right) \\&\quad = \frac{\alpha (N-1+\rho ) k_\rho }{N}\left( \frac{\rho N^2 \frac{1}{N} \sum \limits _{j = 1}^N \lambda _{j,\gamma _j} }{\left( (1+(1-\rho )\alpha )N-(1-\rho )\alpha \right) \left( N-(1-\rho )\right) }- \lambda _{N,\gamma _N} \right) \\&\quad = \frac{\alpha (N-1+\rho ) k_\rho }{N}\left( \varphi \frac{1}{N} \sum \limits _{j = 1}^N \lambda _{j,\gamma _j} - \lambda _{N,\gamma _N}\right) . \end{aligned}$$

Thus, if \(\lambda _{N,\gamma _N} \ge \varphi \sum _{j =1}^N \lambda _{j,\gamma _j}/N\), then \(\lambda _{N,\gamma _N} \ge k_\rho ({\tilde{\lambda }} + \lambda _{1,\gamma _1})\), and \(\pi ^{*0}_i \ge \pi ^{*\alpha }_i\) for every i. \(\square \)

The proof of Proposition 3.8

(i), (ii) is a direct application of Theorem 3.1 and follows similar arguments to those for Proposition 3.7 (iii).

(iii) Given \(\pi ^*_i\)’s, \( \textrm{Beta}_N^* = \frac{(N+\alpha ){\bar{\lambda }} -(N-1)\alpha }{(1+\alpha )({\bar{\lambda }}-(N-1))}\text {, } \textrm{Beta}_N^M = \frac{N {\bar{\lambda }}}{{\bar{\lambda }}-(N-1)}.\) Thus,

$$\begin{aligned}&\left|\textrm{Beta}_N^M-1 \right|-\left|\textrm{Beta}_N^*-1 \right|= \frac{(1+\alpha )(N-1)({\bar{\lambda }}+1)-(N-1)\left( {\bar{\lambda }}+1\right) }{(1+\alpha )|{\bar{\lambda }}-(N-1)|} \\&\quad =\frac{\alpha (N-1)({\bar{\lambda }}+1)}{(1+\alpha )|{\bar{\lambda }}-(N-1)|} >0. \end{aligned}$$

For fund \(i \ne N\), \(\textrm{Beta}_i^* = \frac{1}{1+\alpha }-\frac{N}{(1+\alpha )({\bar{\lambda }}-(N-1))}\frac{{\bar{\gamma }}_{-N}}{\gamma _i}\) and \(\textrm{Beta}_i^M= -\frac{N}{{\bar{\lambda }}-(N-1)}\frac{{\bar{\gamma }}_{-N}}{\gamma _i}\). If \({\bar{\lambda }} > N-1\), both \(\textrm{Beta}\)’s are less than 1, and \(\left|\textrm{Beta}_i^M-1 \right|\ge \left|\textrm{Beta}_i^*-1 \right|\) because

$$\begin{aligned}&\left|\textrm{Beta}_i^M-1 \right|-\left|\textrm{Beta}_i^*-1 \right|= \frac{\alpha }{1+\alpha } \left( 1+ \frac{N}{{\bar{\lambda }}-(N-1)}\frac{{\bar{\gamma }}_{-N}}{\gamma _i}\right) \ge 0. \end{aligned}$$
(18)

If \({\bar{\lambda }} < N-1\) and \(\frac{{\bar{\gamma }}_{-N}}{\gamma _i} \ge \max (\alpha ,1) \frac{N-1-{\bar{\lambda }}}{N}\), both \(\textrm{Beta}\)s are greater than or equal to 1, and

$$\begin{aligned}&\left|\textrm{Beta}_i^M-1 \right|-\left|\textrm{Beta}_i^*-1 \right|= -\frac{\alpha }{1+\alpha } \left( 1+ \frac{N}{{\bar{\lambda }}-(N-1)}\frac{{\bar{\gamma }}_{-N}}{\gamma _i}\right) \ge 0. \end{aligned}$$

Other cases of \({\bar{\gamma }}_{-N}/\gamma _i\) follow by similar arguments. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Ye, J. Fund Managers’ Competition for Investment Flows Based on Relative Performance. J Optim Theory Appl 198, 605–643 (2023). https://doi.org/10.1007/s10957-023-02221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02221-4

Keywords

Mathematics Subject Classification

JEL Classification

Navigation