Skip to main content
Log in

Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study the issue of convergence for inexact steepest descent algorithm (employing general step sizes) for multiobjective optimizations on general Riemannian manifolds (without curvature constraints). Under the assumption of the local convexity/quasi-convexity, local/global convergence results are established. Furthermore, without the assumption of the local convexity/quasi-convexity, but under an error bound-like condition, local/global convergence results and convergence rate estimates are presented, which are new even in the linear space setting. Our results improve/extend the corresponding ones in (Wang et al. in SIAM J Optim 31(1):172–199, 2021) for scalar optimization problems on Riemannian manifolds to multiobjective ones. Finally, for the special case when the inexact steepest descent algorithm employing Armijo rule, our results improve/extend the corresponding ones in (Ferreira et al. in J Optim Theory Appl 184:507–533, 2020) by relaxing curvature constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16, 531–547 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  3. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Bento, G.C., Neto, J.X.D.C., Santo, P.S.M.: An inexact steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 159, 108–124 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Bishop, R.L., Crittenden, R.J.: Geometry of Manifold. Acdemic Press, New York and London (1964)

    MATH  Google Scholar 

  6. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Chen, G.Y., Yang, X.H.X.: Vector Optimization. Springer, Berlin Heidelberg (2005)

    Google Scholar 

  8. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    MathSciNet  MATH  Google Scholar 

  9. DoCarmo, M.P.: Riemannian Geometry. Birkhäuser Boston, Boston (1992)

    Google Scholar 

  10. Drummond, L.M.G., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Drummond, L.M.G., Maculan, N., Svaiter, B.F.: On the choice of parameters for the weighting method in vector optimization. Math. Program. 111, 201–216 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Drummond, L.M.G., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Ermol’ev, Y.M.: On the method of generalized stochastic gradients and quasi-Fejér sequences. Cybernetics 5, 208–220 (1969)

    Google Scholar 

  14. Ferreira, O.P., Lucambio Pérez, L.R., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31, 133–151 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Ferreira, O.P., Louzeiro, M.S., Prudente, L.F.: Iteration-Complexity and asymptotic analysis of steepest descent method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 184, 507–533 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newton’s method for multiobjective mptimization. SIAM J. Optim. 20(2), 602–626 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)

    Google Scholar 

  19. Fukuda, E.H., Drummond, L.M.G.: On the convergence of the projected gradient method for vector optimization. Optim. 60(8–9), 1009–10,221 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Fukuda, E.H., Drummond, L.M.G.: Inexact projected gradient method for vector optimization. Comput. Optim. Appl. 54(3), 493–493 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968)

    MathSciNet  MATH  Google Scholar 

  22. Jahn, J.: Scalarization in vector optimization. Math. Program. 29, 203–218 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control. Optim. 50(4), 2486–2514 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Li, S., Li, C., Liou, Y., Yao, J.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71(11), 5695–5706 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Łojasiewicz, S.: Ensembles semi-analytiques. Inst. Hautes Études Sci, France (1965)

    MATH  Google Scholar 

  27. Luc, D.T.: Theory of vector optimization. Lecture Notes in Economy and Mathematical Systems, Springer Berlin Heidelberg, New York (1989)

    Google Scholar 

  28. Mahony, R.E.: The constrained Newton method on Lie group and the symmetric eigenvalue problem. Linear Algebra Appl. 248, 67–89 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Norwel (1999)

    MATH  Google Scholar 

  30. Miller, S.A., Malick, J.: Newton methods for nonsmooth convex minimization: connections among U-Lagrangian, Riemannian Newton and SQP methods. Math. Program. 104, 609–633 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Papa Quiroz, E.A., Quispe, E.M., Oliveira, P.R.: Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341(1), 467–477 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Polyak, B. T. Introduction to Optimization. Moscow (1983)

  33. Ryu, J.H., Kim, S.: A derivative-free trust-region method for biobjective optimization. SIAM J. Optim. 24, 334–362 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Sakai, T.: Riemannian Geometry. Transl. Math. Monogr., AMS, Providence, (1996)

  35. Smith, S.T.: Geometric optimization methods for adaptive filtering. Harvard University, Cambridge, Massachusetts (1994)

    Google Scholar 

  36. Udriste, C.: Convex functions and optimization methods on Riemannian manifolds. Math. Appl, Kluwer, Dordrecht (1994)

    MATH  Google Scholar 

  37. Wang, J.H., Hu, Y., Yu, C.K.W., Li, C., Yang, X.: Extended Newton methods for multiobjective optimization: majorizing function technique and convergence analysis. SIAM J. Optim. 29, 2388–2421 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Wang, J.H., Wang, X.M., Li, C., Yao, J.C.: Convergence analysis of gradient algorithms on Riemannian manifolds without curvature constraints and application to Riemannian mass. SIAM J. Optim. 31(1), 172–199 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Wang, X.M.: Subgradient algorithms on Riemannian manifolds of lower bounded curvatures. Optim. 67(1), 179–194 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Wang, X.M.: An inexact descent algorithm for multicriteria optimizations on general Riemannian manifolds. J. Nonlin. Convex Anal. 21(10), 2367–2377 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Yang, Y.: Globally convergent optimization algorithms on Riemannian manifolds: uniform framework for unconstrained and constrained optimization. J. Optim. Theory Appl. 132(2), 245–265 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Tanabe, H., Fukuda, E.H., Yamashita, N.: Convergence rates analysis of a multiobjective proximal gradient method. Optim. Lett. 17(2), 333–50 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Yamaguchi, T.: Locally geodesically quasiconvex functions on complete Riemannian manifolds. Trans. Am. Math. Soc. 298(1), 307–330 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the handling editor and two anonymous referees for their very helpful remarks and comments, which allowed us to improve the original presentation. Research of the first author is supported in part by the National Natural Science Foundation of China (Grant 12161017) and Guizhou Provincial Natural Science Foundation of China (Grant ZK[2022]110). Research of the second author was supported in part by the National Natural Science Foundation of China (Grant 12171131). Research of the third author was supported in part by the National Natural Science Foundation of China (Grant 11971429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Wang.

Additional information

Communicated by Sándor Zoltán Németh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.M., Wang, J.H. & Li, C. Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints. J Optim Theory Appl 198, 187–214 (2023). https://doi.org/10.1007/s10957-023-02235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02235-y

Keywords

Mathematics Subject Classification

Navigation